You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

286 lines
13 KiB
Plaintext

#!/bin/sh
. /lib/functions/uci-defaults.sh
board_config_update
board=$(board_name)
boardname="${board##*,}"
case "$board" in
8dev,carambola2)
ucidef_set_led_netdev "lan" "LAN" "$boardname:orange:eth0" "eth0"
ucidef_set_led_switch "wan" "WAN" "$boardname:orange:eth1" "switch0" "0x04"
;;
alfa-network,ap121f)
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth0"
;;
avm,fritz300e)
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth0"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:green:rssi0" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "$boardname:green:rssi1" "wlan0" "20" "100"
ucidef_set_led_rssi "rssimedium" "RSSIMEDIUM" "$boardname:green:rssi2" "wlan0" "40" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "$boardname:green:rssi3" "wlan0" "60" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:green:rssi4" "wlan0" "80" "100"
;;
ath79: add support for Fritz!Box 4020 This commit adds support for the AVM Fritz!Box 4020 WiFi-router. SoC: Qualcomm Atheros QCA9561 (Dragonfly) 750MHz RAM: Winbond W971GG6KB-25 FLASH: Macronix MX25L12835F WiFi: QCA9561 b/g/n 3x3 450Mbit/s USB: 1x USB 2.0 IN: WPS button, WiFi button OUT: Power LED green, Internet LED green, WLAN LED green, LAN LED green, INFO LED green, INFO LED red UART: Header Next to Black metal shield Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet (LAN + WAN) - WiFi (correct MAC) - Installation via EVA bootloader - OpenWRT sysupgrade - Buttons - LEDs The USB port doesn't work. Both Root Hubs are detected as having 0 Ports: [ 3.670807] kmodloader: loading kernel modules from /etc/modules-boot.d/* [ 3.723267] usbcore: registered new interface driver usbfs [ 3.729058] usbcore: registered new interface driver hub [ 3.734616] usbcore: registered new device driver usb [ 3.744181] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 3.758357] SCSI subsystem initialized [ 3.766026] ehci-platform: EHCI generic platform driver [ 3.771548] ehci-platform ehci-platform.0: EHCI Host Controller [ 3.777708] ehci-platform ehci-platform.0: new USB bus registered, assigned bus number 1 [ 3.788169] ehci-platform ehci-platform.0: irq 48, io mem 0x1b000000 [ 3.816647] ehci-platform ehci-platform.0: USB 2.0 started, EHCI 0.00 [ 3.824001] hub 1-0:1.0: USB hub found [ 3.828219] hub 1-0:1.0: config failed, hub doesn't have any ports! (err -19) [ 3.835825] ehci-platform ehci-platform.1: EHCI Host Controller [ 3.842009] ehci-platform ehci-platform.1: new USB bus registered, assigned bus number 2 [ 3.852481] ehci-platform ehci-platform.1: irq 49, io mem 0x1b400000 [ 3.886631] ehci-platform ehci-platform.1: USB 2.0 started, EHCI 0.00 [ 3.894011] hub 2-0:1.0: USB hub found [ 3.898190] hub 2-0:1.0: config failed, hub doesn't have any ports! (err -19) [ 3.908928] usbcore: registered new interface driver usb-storage [ 3.915634] kmodloader: done loading kernel modules from /etc/modules-boot.d/* A few words about the shift-register: AVM used a trick to control the shift-register for the LEDs with only 2 pins, SERCLK and MOSI. Q7S, normally used for daisy-chaining multiple shift-registers, pulls the latch, moving the shift register-state to the storage register. It also pulls down MR (normally pulled up) to clear the storage register, so the latch gets released and will not be pulled by the remaining bits in the shift-register. Shift register is all-zero after this. For that we need to make sure output 7 is set to high on driver probe. We accomplish this by using gpio-hogging. Installation via EVA: In the first seconds after Power is connected, the bootloader will listen for FTP connections on 169.254.157.1 (Might also be 192.168.178.1). Firmware can be uploaded like following: ftp> quote USER adam2 ftp> quote PASS adam2 ftp> binary ftp> debug ftp> passive ftp> quote MEDIA FLSH ftp> put openwrt-sysupgrade.bin mtd1 Note that this procedure might take up to two minutes. After transfer is complete you need to powercycle the device to boot OpenWRT. Signed-off-by: David Bauer <mail@david-bauer.net>
6 years ago
avm,fritz4020)
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth1"
ath79: add support for Fritz!Box 4020 This commit adds support for the AVM Fritz!Box 4020 WiFi-router. SoC: Qualcomm Atheros QCA9561 (Dragonfly) 750MHz RAM: Winbond W971GG6KB-25 FLASH: Macronix MX25L12835F WiFi: QCA9561 b/g/n 3x3 450Mbit/s USB: 1x USB 2.0 IN: WPS button, WiFi button OUT: Power LED green, Internet LED green, WLAN LED green, LAN LED green, INFO LED green, INFO LED red UART: Header Next to Black metal shield Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet (LAN + WAN) - WiFi (correct MAC) - Installation via EVA bootloader - OpenWRT sysupgrade - Buttons - LEDs The USB port doesn't work. Both Root Hubs are detected as having 0 Ports: [ 3.670807] kmodloader: loading kernel modules from /etc/modules-boot.d/* [ 3.723267] usbcore: registered new interface driver usbfs [ 3.729058] usbcore: registered new interface driver hub [ 3.734616] usbcore: registered new device driver usb [ 3.744181] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 3.758357] SCSI subsystem initialized [ 3.766026] ehci-platform: EHCI generic platform driver [ 3.771548] ehci-platform ehci-platform.0: EHCI Host Controller [ 3.777708] ehci-platform ehci-platform.0: new USB bus registered, assigned bus number 1 [ 3.788169] ehci-platform ehci-platform.0: irq 48, io mem 0x1b000000 [ 3.816647] ehci-platform ehci-platform.0: USB 2.0 started, EHCI 0.00 [ 3.824001] hub 1-0:1.0: USB hub found [ 3.828219] hub 1-0:1.0: config failed, hub doesn't have any ports! (err -19) [ 3.835825] ehci-platform ehci-platform.1: EHCI Host Controller [ 3.842009] ehci-platform ehci-platform.1: new USB bus registered, assigned bus number 2 [ 3.852481] ehci-platform ehci-platform.1: irq 49, io mem 0x1b400000 [ 3.886631] ehci-platform ehci-platform.1: USB 2.0 started, EHCI 0.00 [ 3.894011] hub 2-0:1.0: USB hub found [ 3.898190] hub 2-0:1.0: config failed, hub doesn't have any ports! (err -19) [ 3.908928] usbcore: registered new interface driver usb-storage [ 3.915634] kmodloader: done loading kernel modules from /etc/modules-boot.d/* A few words about the shift-register: AVM used a trick to control the shift-register for the LEDs with only 2 pins, SERCLK and MOSI. Q7S, normally used for daisy-chaining multiple shift-registers, pulls the latch, moving the shift register-state to the storage register. It also pulls down MR (normally pulled up) to clear the storage register, so the latch gets released and will not be pulled by the remaining bits in the shift-register. Shift register is all-zero after this. For that we need to make sure output 7 is set to high on driver probe. We accomplish this by using gpio-hogging. Installation via EVA: In the first seconds after Power is connected, the bootloader will listen for FTP connections on 169.254.157.1 (Might also be 192.168.178.1). Firmware can be uploaded like following: ftp> quote USER adam2 ftp> quote PASS adam2 ftp> binary ftp> debug ftp> passive ftp> quote MEDIA FLSH ftp> put openwrt-sysupgrade.bin mtd1 Note that this procedure might take up to two minutes. After transfer is complete you need to powercycle the device to boot OpenWRT. Signed-off-by: David Bauer <mail@david-bauer.net>
6 years ago
ucidef_set_led_switch "lan" "LAN" "$boardname:green:lan" "switch0" "0x1E"
;;
ath79: add support for COMFAST CF-E110N This patch adds support for the COMFAST CF-E110N, an outdoor wireless CPE with two Ethernet ports and a 802.11bgn radio. Specifications: - 650/400/216 MHz (CPU/DDR/AHB) - 2x 10/100 Mbps Ethernet, both with PoE-in support - 64 MB of RAM (DDR2) - 16 MB of FLASH - 2T2R 2.4 GHz, up to 26 dBm - 11 dBi built-in antenna - POWER/LAN/WAN/WLAN green LEDs - 4x RSSI LEDs (2x red, 2x green) - UART (115200 8N1) and GPIO (J9) headers on PCB Flashing instructions: The original firmware is based on OpenWrt so a sysupgrade image can be installed via the stock web GUI. Settings from the original firmware will be saved and restored on the new want, so a factory reset will be needed: once the new firmware is flashed, perform the factory reset by pushing the reset button several times during the boot process, while the WAN LED flashes, until it starts flashing quicker. The U-boot bootloader contains a recovery HTTP server to upload the firmware. Push the reset button while powering the device on and keep it pressed for >10 seconds. The recovery page will be at http://192.168.1.1 Notes: The device is advertised, sold and labeled as "CF-E110N", but the bootloader and the stock firmware identify it as "v2". Acknowledgments: Petr Štetiar <ynezz@true.cz> Sebastian Kemper <sebastian_ml@gmx.net> Chuanhong Guo <gch981213@gmail.com> Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net> [drop unused labels from devicetree source file] Signed-off-by: Mathias Kresin <dev@kresin.me>
6 years ago
comfast,cf-e110n-v2)
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth1"
ath79: add support for COMFAST CF-E110N This patch adds support for the COMFAST CF-E110N, an outdoor wireless CPE with two Ethernet ports and a 802.11bgn radio. Specifications: - 650/400/216 MHz (CPU/DDR/AHB) - 2x 10/100 Mbps Ethernet, both with PoE-in support - 64 MB of RAM (DDR2) - 16 MB of FLASH - 2T2R 2.4 GHz, up to 26 dBm - 11 dBi built-in antenna - POWER/LAN/WAN/WLAN green LEDs - 4x RSSI LEDs (2x red, 2x green) - UART (115200 8N1) and GPIO (J9) headers on PCB Flashing instructions: The original firmware is based on OpenWrt so a sysupgrade image can be installed via the stock web GUI. Settings from the original firmware will be saved and restored on the new want, so a factory reset will be needed: once the new firmware is flashed, perform the factory reset by pushing the reset button several times during the boot process, while the WAN LED flashes, until it starts flashing quicker. The U-boot bootloader contains a recovery HTTP server to upload the firmware. Push the reset button while powering the device on and keep it pressed for >10 seconds. The recovery page will be at http://192.168.1.1 Notes: The device is advertised, sold and labeled as "CF-E110N", but the bootloader and the stock firmware identify it as "v2". Acknowledgments: Petr Štetiar <ynezz@true.cz> Sebastian Kemper <sebastian_ml@gmx.net> Chuanhong Guo <gch981213@gmail.com> Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net> [drop unused labels from devicetree source file] Signed-off-by: Mathias Kresin <dev@kresin.me>
6 years ago
ucidef_set_led_switch "wan" "WAN" "$boardname:green:wan" "switch0" "0x02"
ucidef_set_led_wlan "wlan" "WLAN" "$boardname:green:wlan" "phy0tpt"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:red:rssilow" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "$boardname:red:rssimediumlow" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "$boardname:green:rssimediumhigh" "wlan0" "51" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:green:rssihigh" "wlan0" "76" "100"
;;
comfast,cf-e120a-v3)
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth1"
ucidef_set_led_switch "wan" "WAN" "$boardname:green:wan" "switch0" "0x04"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:red:rssilow" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "$boardname:red:rssimediumlow" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "$boardname:green:rssimediumhigh" "wlan0" "51" "100"
ath79: add support for COMFAST CF-E313AC This patch adds support for the COMFAST CF-E313AC, an outdoor wireless CPE with two Ethernet ports and a 802.11ac radio. Specifications: - QCA9531 SoC - 650/400/216 MHz (CPU/DDR/AHB) - 1x 10/100 Mbps WAN Ethernet, 48V PoE-in - 1x 10/100 Mbps LAN Ethernet, pass-through 48V PoE-out - 1x manual pass-through PoE switch - 64 MB RAM (DDR2) - 16 MB FLASH - QCA9886 2T2R 5 GHz 802.11ac, 23 dBm - 12 dBi built-in antenna - POWER/LAN/WAN/WLAN green LEDs - 4x RSSI LEDs (2x red, 2x green) - UART (115200 8N1) Flashing instructions: The original firmware is based on OpenWrt so a sysupgrade image can be installed via the stock web GUI. Settings from the original firmware will be saved and restored on the new one, so a factory reset will be needed. To do so, once the new firmware is flashed, enter into failsafe mode by pressing the reset button several times during the boot process, while the WAN LED flashes, until it starts flashing faster. Once in failsafe mode, perform a factory reset as usual. Alternatively, the U-boot bootloader contains a recovery HTTP server to upload the firmware. Push the reset button while powering the device on and keep it pressed for >10 seconds. The device's LEDs will blink several times and the recovery page will be at http://192.168.1.1; use it to upload the sysupgrade image. Note: Four MAC addresses are stored in the "art" partition (read-only): - 0x0000: 40:A5:EF:AA:AA:A0 - 0x0006: 40:A5:EF:AA:AA:A2 - 0x1002: 40:A5:EF:AA:AA:A1 - 0x5006: 40:A5:EF:AA.AA:A3 (inside the 5 GHz calibration data) The stock firmware assigns MAC addresses to physical and virtual interfaces in a very particular way: - eth0 corresponds to the physical Ethernet port labeled as WAN - eth1 corresponds to the physical Ethernet port labeled as LAN - eth0 belongs to the bridge interface br-wan - eth1 belongs to the bridge interface br-lan - eth0 is assigned the MAC from 0x0 (*:A0) - eth1 is assigned the MAC from 0x1002 (*:A1) - br-wan is forced to use the MAC from 0x1002 (*:A1) - br-lan is forced to use the MAC from 0x0 (*:A0) - radio0 uses the calibration data from 0x5000 (which contains a valid MAC address, *:A3). However, it is overwritten by the one at 0x6 (*:A2) This commit preserves the LAN/WAN roles of the physical Ethernet ports (as labeled on the router) and the MAC addresses they expose by default (i.e., *:A0 on LAN, *:A1 on WAN), but swaps the position of the eth0/eth1 compared to the stock firmware: - eth0 corresponds to the physical Ethernet port labeled as LAN - eth1 corresponds to the physical Ethernet port labeled as WAN - eth0 belongs to the bridge interface br-lan - eth1 is the interface at @wan - eth0 is assigned the MAC from 0x0 (*:A0) - eth1 is assigned the MAC from 0x1002 (*:A1) - br-lan inherits the MAC from eth0 (*:A0) - @wan inherits the MAC from eth1 (*:A1) - radio0's MAC is overwritten to the one at 0x6 This way, eth0/eth1's positions differ from the stock firmware, but the weird MAC ressignations in br-lan/br-wan are avoided while the external behaviour of the router is maintained. Additionally, WAN port is connected to the PHY gmac, allowing to monitor the link status (e.g., to restart DHCP negotiation when plugging a cable). Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
5 years ago
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:green:rssihigh" "wlan0" "76" "100"
;;
comfast,cf-e313ac)
ucidef_set_led_switch "lan" "LAN" "$boardname:green:lan" "switch0" "0x02"
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth1"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:red:rssilow" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "$boardname:red:rssimediumlow" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "$boardname:green:rssimediumhigh" "wlan0" "51" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:green:rssihigh" "wlan0" "76" "100"
;;
comfast,cf-e314n-v2)
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth0"
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth1"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:red:rssilow" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "$boardname:red:rssimediumlow" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "$boardname:green:rssimediumhigh" "wlan0" "51" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:green:rssihigh" "wlan0" "76" "100"
;;
comfast,cf-e5)
ucidef_set_led_switch "lan" "LAN" "$boardname:blue:lan" "switch0" "0x02"
ucidef_set_led_netdev "wan" "WAN" "$boardname:blue:wan" "eth1"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:blue:rssi0" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimedium" "RSSIMEDIUM" "$boardname:blue:rssi1" "wlan0" "33" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "$boardname:blue:rssi2" "wlan0" "66" "100"
;;
ath79: add support for COMFAST CF-E560AC This commit adds support for the COMFAST CF-E560AC, an ap143 based in-wall access point. Specifications: - SoC: Qualcomm Atheros QCA9531 - RAM: 128 MB DDR2 (Winbond W971GG6SB-25) - Storage: 16 MB NOR (Winbond 25Q128JVSO) - WAN: 1x 10/100 PoE ethernet (48v) - LAN: 4x 10/100 ethernet - WLAN1: QCA9531 - 802.11b/g/n - 2x SKY85303-21 FEM - WLAN2: QCA9886 - 802.11ac/n/a - 2x SKY85735-11 FEM - USB: one external USB2.0 port - UART: 3.3v, 2.54mm headers already populated on board - LED: 7x external - Button: 1x external - Boot: U-Boot 1.1.4 (pepe2k/u-boot_mod) MAC addressing: - stock LAN *:40 (label) WAN *:41 5G *:42 2.4G *:4a - flash (art partition) 0x0 *:40 (label) 0x6 *:42 0x1002 *:41 0x5006 *:43 This device contains valid MAC addresses in art 0x0, 0x6, 0x1002 and 0x5006, however the vendor firmware only reads from art:0x0 for the LAN interface and then increments in 02_network. They also jump 8 addresses for the second wifi interface (2.4 GHz). This behavior has been duplicated in the DTS and ath10k hotplug to align addresses with the vendor firmware v2.6.0. Recovery instructions: This device contains built-in u-boot tftp recovery. 1. Configure PC with static IP 192.168.1.10/24 and tftp server. 2. Place desired image at /firmware_auto.bin at tftp root. 3. Connect device to PC, and power on. 4. Device will fetch flash from tftp, flash and reboot into new image. Signed-off-by: August Huber <auh@google.com> [move jtag_disable_pins, remove unnecessary statuses in DTS, remove duplicate entry in 11-ath10k-caldata, remove hub_port0 label in DTS] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
4 years ago
comfast,cf-e560ac)
ucidef_set_led_netdev "wan" "WAN" "$boardname:blue:wan" "eth1"
ucidef_set_led_switch "lan1" "LAN1" "$boardname:blue:lan1" "switch0" "0x02"
ucidef_set_led_switch "lan2" "LAN2" "$boardname:blue:lan2" "switch0" "0x04"
ucidef_set_led_switch "lan3" "LAN3" "$boardname:blue:lan3" "switch0" "0x08"
ucidef_set_led_switch "lan4" "LAN4" "$boardname:blue:lan4" "switch0" "0x10"
;;
dlink,dir-842-c1|\
dlink,dir-842-c2|\
dlink,dir-842-c3|\
dlink,dir-859-a1)
ucidef_set_led_switch "internet" "WAN" "$boardname:green:internet" "switch0" "0x20"
;;
engenius,ecb1750)
ucidef_set_led_netdev "lan" "LAN" "$boardname:blue:lan" "eth0"
;;
engenius,ews511ap)
ucidef_set_led_netdev "lan1" "LAN1" "$boardname:blue:lan1" "eth1"
ucidef_set_led_netdev "lan2" "LAN2" "$boardname:blue:lan2" "eth0"
;;
etactica,eg200)
ucidef_set_led_netdev "lan" "LAN" "$boardname:red:eth0" "eth0"
ucidef_set_led_oneshot "modbus" "Modbus" "$boardname:red:modbus" "100" "33"
;;
glinet,6408|\
glinet,6416)
ucidef_set_led_netdev "lan" "LAN" "gl-inet:green:lan" "eth0"
;;
glinet,gl-ar150)
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth1"
ucidef_set_led_switch "lan" "LAN" "$boardname:green:lan" "switch0" "0x02"
;;
glinet,gl-ar300m-lite)
ucidef_set_led_netdev "lan" "LAN" "gl-ar300m-lite:green:lan" "eth0"
;;
glinet,gl-ar300m16)
ucidef_set_led_netdev "lan" "LAN" "gl-ar300m:green:lan" "eth0"
;;
glinet,gl-x750)
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth1"
;;
netgear,wnr2200-8m|\
netgear,wnr2200-16m)
ucidef_set_led_netdev "wan-amber" "WAN (amber)" "netgear:amber:wan" "eth0"
ucidef_set_led_switch "lan1green" "LAN1 (green)" "netgear:green:lan1" "switch0" "0x02" "0x04"
ucidef_set_led_switch "lan2green" "LAN2 (green)" "netgear:green:lan2" "switch0" "0x04" "0x04"
ucidef_set_led_switch "lan3green" "LAN3 (green)" "netgear:green:lan3" "switch0" "0x08" "0x04"
ucidef_set_led_switch "lan4green" "LAN4 (green)" "netgear:green:lan4" "switch0" "0x10" "0x04"
ucidef_set_led_switch "lan1amber" "LAN1 (amber)" "netgear:amber:lan1" "switch0" "0x02" "0x02"
ucidef_set_led_switch "lan2amber" "LAN2 (amber)" "netgear:amber:lan2" "switch0" "0x04" "0x02"
ucidef_set_led_switch "lan3amber" "LAN3 (amber)" "netgear:amber:lan3" "switch0" "0x08" "0x02"
ucidef_set_led_switch "lan4amber" "LAN4 (amber)" "netgear:amber:lan4" "switch0" "0x10" "0x02"
;;
pcs,cap324)
ucidef_set_led_netdev "lan" "LAN" "pcs:lan:green" "eth0"
;;
pcs,cr3000)
ucidef_set_led_netdev "wan" "WAN" "pcs:blue:wan" "eth1"
ucidef_set_led_switch "lan1" "LAN1" "pcs:blue:lan1" "switch0" "0x04"
ucidef_set_led_switch "lan2" "LAN2" "pcs:blue:lan2" "switch0" "0x08"
ucidef_set_led_switch "lan3" "LAN3" "pcs:blue:lan3" "switch0" "0x10"
ucidef_set_led_switch "lan4" "LAN4" "pcs:blue:lan4" "switch0" "0x02"
;;
qihoo,c301)
ucidef_set_led_wlan "wlan" "WLAN" "$boardname:green:wlan" "phy0tpt"
;;
tplink,archer-a7-v5|\
tplink,archer-c7-v4|\
tplink,archer-c7-v5)
ath79: add support for TP-Link Archer A7 This patch adds support for TP-Link Archer A7 Specification: - SOC: QCA9563 - Flash: 16 MiB (SPI) - RAM: 128 MiB (DDR2) - Ethernet: 4x 1Gbps LAN + 1x 1Gbps WAN - Wireless: - 2.4GHz (bgn) SoC internal - 5GHz (ac) QCA988x - USB: 1x USB 2.0 port - Button: 1x power, 1x reset, 1x wps - LED: 10x LEDs - UART: holes in PCB - Vcc, GND, RX, TX from ethernet port side - 115200n8 Flash instructions: Upload openwrt-ath79-generic-tplink_archer-a7-v5-squashfs-factory.bin via the Webinterface. Flash instruction using tftp recovery: 1. Connect the computer to one of the LAN ports of the Archer A7 2. Set the computer IP to 192.168.0.66 3. Start a tftp server with the OpenWrt factory image in the tftp root directory renamed to ArcherC7v5_tp_recovery.bin 2. Connect power cable to Archer A7, press and hold the reset button and turn the router on 3. Keep the reset button pressed for ~5 seconds 4. Wait ~150 seconds to complete flashing Changes since first revision: - Flash instructions using stock image webinterface - Changed "Version 5" in model string to "v5" - Split DTS file in qca9563_tplink_archer-x7-v5.dtsi and qca9563_tplink_archer-a7-v5.dts - Firmware image is now build with dynamic partitioning - Default to ath10k-ct Changes since second revision: - Changed uboot@0 to uboot@20000 in DTS file - Fixed ordering issue in board led script - Specify firmware partition format in DTS file - Rebased Makefile device definition on common Device/tplink-safeloader-uimage definition - Merged switch section in network script (same configuration as tplink,tl-wdr3600 and tplink,tl-wdr4300) Signed-off-by: Karl-Felix Glatzer <karl.glatzer@gmx.de>
6 years ago
ucidef_set_led_switch "wan" "WAN" "tp-link:green:wan" "switch0" "0x02"
ucidef_set_led_switch "lan1" "LAN1" "tp-link:green:lan1" "switch0" "0x04"
ucidef_set_led_switch "lan2" "LAN2" "tp-link:green:lan2" "switch0" "0x08"
ucidef_set_led_switch "lan3" "LAN3" "tp-link:green:lan3" "switch0" "0x10"
ucidef_set_led_switch "lan4" "LAN4" "tp-link:green:lan4" "switch0" "0x20"
;;
tplink,archer-c2-v3|\
tplink,tl-wr1043nd-v4|\
tplink,tl-wr1043n-v5)
ucidef_set_led_switch "wan" "WAN" "tp-link:green:wan" "switch0" "0x20"
ucidef_set_led_switch "lan1" "LAN1" "tp-link:green:lan1" "switch0" "0x10"
ucidef_set_led_switch "lan2" "LAN2" "tp-link:green:lan2" "switch0" "0x08"
ucidef_set_led_switch "lan3" "LAN3" "tp-link:green:lan3" "switch0" "0x04"
ucidef_set_led_switch "lan4" "LAN4" "tp-link:green:lan4" "switch0" "0x02"
;;
ath79: add support for TP-Link Archer C6 v2 (US) and A6 (US/TW) This patch is based on #1689 and adds support for TP-Link Archer C6 v2 (US) and A6 (US/TW). The hardware is the same as EU and RU variant, except for GPIOs (LEDS/Buttons), flash(chip/partitions) and UART being available on the board. - SOC: Qualcomm QCA9563 @ 775MHz - Flash: GigaDevice GD25Q127CS1G (16MiB) - RAM: Zentel A3R1GE40JBF (128 MiB DDR2) - Ethernet: Qualcomm QCA8337N: 4x 1Gbps LAN + 1x 1Gbps WAN - Wireless: - 2.4GHz (bgn) QCA9563 integrated (3x3) - 5GHz (ac) Qualcomm QCA9886 (2x2) - Button: 1x power, 1x reset, 1x wps - LED: 6x LEDs: power, wlan2g, wlan5g, lan, wan, wps - UART: 115200, 8n1 (header available on board) Known issues: - Wireless: 5GHz is known to have lower RSSI signal, it affects speed and range. Flash instructions: Upload openwrt-ath79-generic-tplink_archer-c6-v2-us-squashfs-factory.bin via the router Web interface. Flash instruction using tftp recovery: 1. Connect the computer to one of the LAN ports of the router 2. Set the computer IP to 192.168.0.66 3. Start a tftp server with the OpenWrt factory image in the tftp root directory renamed to ArcherA6v2_tp_recovery.bin. 4. Connect power cable to router, press and hold the reset button and turn the router on 5. Keep the reset button pressed until the WPS LED lights up 6. Wait ~150 seconds to complete flashing Flash partitioning: I've followed #1689 for defining the partition layout for this patch. The partition named as "tplink" @ 0xfd0000 is marked as read only as it is where some config for stock firmware are stored. On stock firmware those stock partitions starts at 0xfd9400 however I had not been able to make it functional starting on the same address as on stock fw, so it has been partitioned following #1689 and not the stock partition layout for this specific partition. Due to that firmware/rootfs partition lenght is 0xf80000 and not 0xf89400 as stock. According to the GPL code, the EU/RU/JP variant does have different GPIO pins assignment to LEDs and buttons, also the flash memory layout is different. GPL Source Code: https://static.tp-link.com/resources/gpl/gpl-A6v2_us.tar.gz Signed-off-by: Anderson Vulczak <andi@andi.com.br> [wrap commit message, remove soft_ver change for C6 v2 EU, move LED aliases to DTS files, remove dts-v1 in DTSI, node/property reorder in DTSI] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
5 years ago
tplink,archer-c6-v2|\
tplink,archer-c6-v2-us)
ucidef_set_led_switch "lan" "LAN" "tp-link:green:lan" "switch0" "0x3C"
ucidef_set_led_switch "wan" "WAN" "tp-link:green:wan" "switch0" "0x02"
;;
tplink,archer-c25-v1|\
tplink,tl-wr842n-v3)
ucidef_set_led_netdev "wan" "WAN" "tp-link:green:wan" "eth1"
ucidef_set_led_switch "lan1" "LAN1" "tp-link:green:lan1" "switch0" "0x10"
ucidef_set_led_switch "lan2" "LAN2" "tp-link:green:lan2" "switch0" "0x08"
ucidef_set_led_switch "lan3" "LAN3" "tp-link:green:lan3" "switch0" "0x04"
ucidef_set_led_switch "lan4" "LAN4" "tp-link:green:lan4" "switch0" "0x02"
;;
tplink,archer-c58-v1|\
tplink,archer-c59-v1|\
tplink,archer-c59-v2|\
tplink,archer-c60-v1|\
tplink,archer-c60-v2)
ucidef_set_led_switch "lan" "LAN" "tp-link:green:lan" "switch0" "0x1E"
ucidef_set_led_netdev "wan" "WAN" "tp-link:green:wan" "eth1"
;;
tplink,archer-d50-v1)
ucidef_set_led_switch "lan" "LAN" "tp-link:white:lan" "switch0" "0x1c"
ucidef_set_led_switch "wan_data" "WAN Data" "tp-link:white:internet" "switch0" "0x02" "" "tx rx"
ucidef_set_led_switch "wan_link" "WAN Link" "tp-link:white:wan" "switch0" "0x02" "" "link"
;;
tplink,cpe210-v1|\
tplink,cpe220-v2|\
tplink,cpe220-v3|\
tplink,cpe510-v1|\
tplink,wbs210-v2|\
tplink,wbs510-v1|\
tplink,wbs510-v2)
ucidef_set_led_netdev "lan0" "LAN0" "tp-link:green:lan0" "eth1"
ucidef_set_led_switch "lan1" "LAN1" "tp-link:green:lan1" "switch0" "0x10"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "tp-link:green:link1" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "tp-link:green:link2" "wlan0" "30" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "tp-link:green:link3" "wlan0" "60" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "tp-link:green:link4" "wlan0" "80" "100"
;;
tplink,cpe210-v2|\
tplink,cpe210-v3)
ucidef_set_led_netdev "lan" "LAN" "tp-link:green:lan" "eth0"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "tp-link:green:link1" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "tp-link:green:link2" "wlan0" "30" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "tp-link:green:link3" "wlan0" "60" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "tp-link:green:link4" "wlan0" "80" "100"
;;
tplink,cpe510-v2|\
tplink,cpe510-v3)
ucidef_set_led_netdev "lan" "LAN" "tp-link:green:lan" "eth0"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "tp-link:green:link1" "wlan0" "1" "100" "0" "13"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "tp-link:green:link2" "wlan0" "26" "100" "-25" "13"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "tp-link:green:link3" "wlan0" "51" "100" "-50" "13"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "tp-link:green:link4" "wlan0" "76" "100" "-75" "13"
;;
ath79: add support for TP-Link TL-WR902AC v1 TP-Link TL-WR902AC v1 is a pocket-size, dual-band (AC750), successor of TL-MR3020 (both devices use very similar enclosure, in same size). New device is based on Qualcomm QCA9531 v2 + QCA9887. FCC ID: TE7WR902AC. Specification: - 650/391/216 MHz (CPU/DDR/AHB) - 1x 10/100 Mbps Ethernet - 1x USB 2.0 (GPIO-controlled power) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz (QCA9531) - 1T1R 5 GHz (QCA9887) - 5x LED (GPIO-controlled), 2x button, 1x 3-pos switch - UART pads on PCB (TP1 -> TX, TP2 -> RX, TP3 -> GND, TP4 -> 3V3, jumper resitors are missing on TX/RX lines) - 1x micro USB (for power only) Flash instructions: Use "factory" image under vendor GUI. Recovery instructions: This device contains tftp recovery mode inside U-Boot. You can use it to flash OpenWrt (use "factory" image) or vendor firmware. 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "openwrt-ath79-generic-tplink_tl-wr902ac-v1-squashfs-factory.bin" to "wr902acv1_un_tp_recovery.bin" and place it in tftp server dir. 3. Connect PC with LAN port, press the reset button, power up the router and keep button pressed until WPS LED lights up. 4. Router will download file from server, write it to flash and reboot. MAC Address summary: - wlan1 (2.4GHz Wi-Fi): Label MAC - wlan0 (5GHz Wi-Fi): Offset -1 from label - eth0 (Wired): Offset +1 from label Root access over serial line in vendor firmware: root/sohoadmin. Based on support in ar71xx target by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Lech Perczak <lech.perczak@gmail.com> [remove size-cells from gpio-export] Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
5 years ago
tplink,cpe610-v1|\
tplink,tl-wr902ac-v1)
ucidef_set_led_netdev "lan" "LAN" "tp-link:green:lan" "eth0"
ucidef_set_led_netdev "internet" "Internet" "tp-link:green:internet" "eth0"
;;
tplink,re355-v1|\
tplink,re450-v1|\
tplink,re450-v2)
ucidef_set_led_netdev "lan_data" "LAN Data" "tp-link:green:lan_data" "eth0" "tx rx"
ucidef_set_led_netdev "lan_link" "LAN Link" "tp-link:green:lan_link" "eth0" "link"
;;
tplink,tl-mr6400-v1)
ucidef_set_led_switch "lan" "LAN" "tp-link:white:lan" "switch0" "0x0e"
ucidef_set_led_netdev "wan" "WAN" "tp-link:white:wan" "eth1"
ucidef_set_led_netdev "4g" "4G" "tp-link:white:4g" "usb0"
;;
tplink,tl-wr842n-v2)
ucidef_set_led_netdev "wan" "WAN" "tp-link:green:wan" "eth1"
ucidef_set_led_switch "lan1" "LAN1" "tp-link:green:lan1" "switch0" "0x04"
ucidef_set_led_switch "lan2" "LAN2" "tp-link:green:lan2" "switch0" "0x08"
ucidef_set_led_switch "lan3" "LAN3" "tp-link:green:lan3" "switch0" "0x10"
ucidef_set_led_switch "lan4" "LAN4" "tp-link:green:lan4" "switch0" "0x02"
;;
trendnet,tew-823dru)
ucidef_set_led_netdev "wan" "WAN" "trendnet:green:planet" "eth0"
;;
ubnt,bullet-m|\
ubnt,bullet-m-xw|\
ath79: add support for Ubiquiti Nanostation Loco M (XM) This adds support for the Ubiquiti Nanostation Loco M (XM), which has the same board/LEDs as the Bullet M XM, but different case and antennas. Specifications: - AR7241 SoC @ 400 MHz - 32 MB RAM - 8 MB SPI flash - 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in - NS Loco M2: built-in antenna: 8 dBi; AR9287 - NS Loco M5: built-in antenna: 13 dBi; 2T2R 5 GHz radio - POWER/LAN green LEDs - 4x RSSI LEDs (red, orange, green, green) - UART (115200 8N1) on PCB Flashing via WebUI: Upload the factory image via the stock firmware web UI. Note that only certain firmware versions accept unsigned images. Refer to the device's Wiki page for further information. Flashing via TFTP: Same procedure as other NanoStation M boards. - Use a pointy tool (e.g., pen cap, paper clip) and keep the reset button on the device or on the PoE supply pressed - Power on the device via PoE (keep reset button pressed) - Keep pressing until LEDs flash alternatively LED1+LED3 => LED2+LED4 => LED1+LED3, etc. - Release reset button - The device starts a TFTP server at 192.168.1.20 - Set a static IP on the computer (e.g., 192.168.1.21/24) - Upload via tftp the factory image: $ tftp 192.168.1.20 tftp> bin tftp> trace tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-squashfs-factory.bin Tested on NanoStation Loco M2. Signed-off-by: Sven Roederer <freifunk@it-solutions.geroedel.de> Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
4 years ago
ubnt,nanostation-loco-m|\
ubnt,nanostation-loco-m-xw|\
ubnt,nanostation-m|\
ubnt,nanostation-m-xw|\
ubnt,rocket-m)
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "ubnt:red:link1" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "ubnt:orange:link2" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "ubnt:green:link3" "wlan0" "51" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "ubnt:green:link4" "wlan0" "76" "100"
;;
ath79: Add support for Ubiquiti NanoBeam AC The NanoBeam is a small AR9342 based directional 5 GHz AC CPE with hardware almost identical to the Ubiquiti NanoStation AC loco. Over the NanoStation AC loco it has 5 additional LEDs. Four of those LEDs are used as rssi indicators, the fifth LED is used as an ethernet link/activity indicator. CPU: Atheros AR9342 SoC RAM: 64 MB DDR2 Flash: 16 MB NOR SPI WLAN: QCA988X Ports: 1x GbE Flashing procedure is identical to the NanoStation AC loco and can be performed either via serial or the factory firmware upgrade. Serial flashing: 1. Connect to serial header on device (8N1 115200) 2. Power on device and enter uboot console 3. Set up tftp server serving an openwrt initramfs build 4. Load initramfs build using the command tftpboot in the uboot cli 5. Boot the loaded image using the command bootm 6. Copy squashfs openwrt sysupgrade build to the booted device 7. Use mtd to write sysupgrade to partition "firmware" 8. Reboot and enjoy Flashing through factory firmware: 1. Ensure firmware version v8.5.0.36727 is installed. Up/downgrade to this exact version. 2. Patch fwupdate.real binary using `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe fe/00 00 00 00/g' | hexdump -R > /tmp/fwupdate.real` 3. Make the patched fwupdate.real binary executable using `chmod +x /tmp/fwupdate.real` 4. Copy the squashfs factory image to /tmp on the device 5. Flash OpenWRT using `/tmp/fwupdate.real -m <squashfs-factory image>` 6. Wait for the device to reboot Thanks to @cybermaus for testing! Tested-by: Maurits van Dueren den Hollander <cybermaus@gmail.com> Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
5 years ago
ubnt,nanobeam-ac|\
ubnt,nanostation-ac)
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "ubnt:blue:rssi0" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimediumlow" "RSSIMEDIUMLOW" "ubnt:blue:rssi1" "wlan0" "26" "100"
ucidef_set_led_rssi "rssimediumhigh" "RSSIMEDIUMHIGH" "ubnt:blue:rssi2" "wlan0" "51" "100"
ucidef_set_led_rssi "rssihigh" "RSSIHIGH" "ubnt:blue:rssi3" "wlan0" "76" "100"
;;
wd,mynet-wifi-rangeextender)
ucidef_set_led_netdev "lan" "LAN" "$boardname:green:lan" "eth0"
ucidef_set_rssimon "wlan0" "200000" "1"
ucidef_set_led_rssi "rssilow" "RSSILOW" "$boardname:rssi-low" "wlan0" "1" "100"
ucidef_set_led_rssi "rssimedium" "RSSIMED" "$boardname:blue:rssi-med" "wlan0" "33" "100"
ucidef_set_led_rssi "rssihigh" "RSSIMAX" "$boardname:blue:rssi-max" "wlan0" "66" "100"
;;
yuncore,a770)
ucidef_set_led_netdev "wan" "WAN" "$boardname:green:wan" "eth1"
ucidef_set_led_switch "lan" "LAN" "$boardname:green:lan" "switch0" "0x10"
;;
ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
5 years ago
zbtlink,zbt-wd323)
ucidef_set_led_switch "lan1" "LAN1" "zbt-wd323:orange:lan1" "switch0" "0x10"
ucidef_set_led_switch "lan2" "LAN2" "zbt-wd323:orange:lan2" "switch0" "0x08"
;;
esac
board_config_flush
exit 0