You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openwrt/target/linux/generic/files/drivers/net/phy/rtl8366s.c

1786 lines
42 KiB
C

/*
* Platform driver for the Realtek RTL8366S ethernet switch
*
* Copyright (C) 2009-2010 Gabor Juhos <juhosg@openwrt.org>
* Copyright (C) 2010 Antti Seppälä <a.seppala@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/switch.h>
#include <linux/rtl8366s.h>
#include "rtl8366_smi.h"
#ifdef CONFIG_RTL8366S_PHY_DEBUG_FS
#include <linux/debugfs.h>
#endif
#define RTL8366S_DRIVER_DESC "Realtek RTL8366S ethernet switch driver"
#define RTL8366S_DRIVER_VER "0.2.2"
#define RTL8366S_PHY_NO_MAX 4
#define RTL8366S_PHY_PAGE_MAX 7
#define RTL8366S_PHY_ADDR_MAX 31
#define RTL8366S_CHIP_GLOBAL_CTRL_REG 0x0000
#define RTL8366S_CHIP_CTRL_VLAN (1 << 13)
/* Switch Global Configuration register */
#define RTL8366S_SGCR 0x0000
#define RTL8366S_SGCR_EN_BC_STORM_CTRL BIT(0)
#define RTL8366S_SGCR_MAX_LENGTH(_x) (_x << 4)
#define RTL8366S_SGCR_MAX_LENGTH_MASK RTL8366S_SGCR_MAX_LENGTH(0x3)
#define RTL8366S_SGCR_MAX_LENGTH_1522 RTL8366S_SGCR_MAX_LENGTH(0x0)
#define RTL8366S_SGCR_MAX_LENGTH_1536 RTL8366S_SGCR_MAX_LENGTH(0x1)
#define RTL8366S_SGCR_MAX_LENGTH_1552 RTL8366S_SGCR_MAX_LENGTH(0x2)
#define RTL8366S_SGCR_MAX_LENGTH_16000 RTL8366S_SGCR_MAX_LENGTH(0x3)
/* Port Enable Control register */
#define RTL8366S_PECR 0x0001
/* Switch Security Control registers */
#define RTL8366S_SSCR0 0x0002
#define RTL8366S_SSCR1 0x0003
#define RTL8366S_SSCR2 0x0004
#define RTL8366S_SSCR2_DROP_UNKNOWN_DA BIT(0)
#define RTL8366S_RESET_CTRL_REG 0x0100
#define RTL8366S_CHIP_CTRL_RESET_HW 1
#define RTL8366S_CHIP_CTRL_RESET_SW (1 << 1)
#define RTL8366S_CHIP_VERSION_CTRL_REG 0x0104
#define RTL8366S_CHIP_VERSION_MASK 0xf
#define RTL8366S_CHIP_ID_REG 0x0105
#define RTL8366S_CHIP_ID_8366 0x8366
/* PHY registers control */
#define RTL8366S_PHY_ACCESS_CTRL_REG 0x8028
#define RTL8366S_PHY_ACCESS_DATA_REG 0x8029
#define RTL8366S_PHY_CTRL_READ 1
#define RTL8366S_PHY_CTRL_WRITE 0
#define RTL8366S_PHY_REG_MASK 0x1f
#define RTL8366S_PHY_PAGE_OFFSET 5
#define RTL8366S_PHY_PAGE_MASK (0x7 << 5)
#define RTL8366S_PHY_NO_OFFSET 9
#define RTL8366S_PHY_NO_MASK (0x1f << 9)
/* LED control registers */
#define RTL8366S_LED_BLINKRATE_REG 0x0420
#define RTL8366S_LED_BLINKRATE_BIT 0
#define RTL8366S_LED_BLINKRATE_MASK 0x0007
#define RTL8366S_LED_CTRL_REG 0x0421
#define RTL8366S_LED_0_1_CTRL_REG 0x0422
#define RTL8366S_LED_2_3_CTRL_REG 0x0423
#define RTL8366S_MIB_COUNT 33
#define RTL8366S_GLOBAL_MIB_COUNT 1
#define RTL8366S_MIB_COUNTER_PORT_OFFSET 0x0040
#define RTL8366S_MIB_COUNTER_BASE 0x1000
#define RTL8366S_MIB_COUNTER_PORT_OFFSET2 0x0008
#define RTL8366S_MIB_COUNTER_BASE2 0x1180
#define RTL8366S_MIB_CTRL_REG 0x11F0
#define RTL8366S_MIB_CTRL_USER_MASK 0x01FF
#define RTL8366S_MIB_CTRL_BUSY_MASK 0x0001
#define RTL8366S_MIB_CTRL_RESET_MASK 0x0002
#define RTL8366S_MIB_CTRL_GLOBAL_RESET_MASK 0x0004
#define RTL8366S_MIB_CTRL_PORT_RESET_BIT 0x0003
#define RTL8366S_MIB_CTRL_PORT_RESET_MASK 0x01FC
#define RTL8366S_PORT_VLAN_CTRL_BASE 0x0058
#define RTL8366S_PORT_VLAN_CTRL_REG(_p) \
(RTL8366S_PORT_VLAN_CTRL_BASE + (_p) / 4)
#define RTL8366S_PORT_VLAN_CTRL_MASK 0xf
#define RTL8366S_PORT_VLAN_CTRL_SHIFT(_p) (4 * ((_p) % 4))
#define RTL8366S_VLAN_TABLE_READ_BASE 0x018B
#define RTL8366S_VLAN_TABLE_WRITE_BASE 0x0185
#define RTL8366S_VLAN_TB_CTRL_REG 0x010F
#define RTL8366S_TABLE_ACCESS_CTRL_REG 0x0180
#define RTL8366S_TABLE_VLAN_READ_CTRL 0x0E01
#define RTL8366S_TABLE_VLAN_WRITE_CTRL 0x0F01
#define RTL8366S_VLAN_MEMCONF_BASE 0x0016
#define RTL8366S_PORT_LINK_STATUS_BASE 0x0060
#define RTL8366S_PORT_STATUS_SPEED_MASK 0x0003
#define RTL8366S_PORT_STATUS_DUPLEX_MASK 0x0004
#define RTL8366S_PORT_STATUS_LINK_MASK 0x0010
#define RTL8366S_PORT_STATUS_TXPAUSE_MASK 0x0020
#define RTL8366S_PORT_STATUS_RXPAUSE_MASK 0x0040
#define RTL8366S_PORT_STATUS_AN_MASK 0x0080
#define RTL8366S_PORT_NUM_CPU 5
#define RTL8366S_NUM_PORTS 6
#define RTL8366S_NUM_VLANS 16
#define RTL8366S_NUM_LEDGROUPS 4
#define RTL8366S_NUM_VIDS 4096
#define RTL8366S_PRIORITYMAX 7
#define RTL8366S_FIDMAX 7
#define RTL8366S_PORT_1 (1 << 0) /* In userspace port 0 */
#define RTL8366S_PORT_2 (1 << 1) /* In userspace port 1 */
#define RTL8366S_PORT_3 (1 << 2) /* In userspace port 2 */
#define RTL8366S_PORT_4 (1 << 3) /* In userspace port 3 */
#define RTL8366S_PORT_UNKNOWN (1 << 4) /* No known connection */
#define RTL8366S_PORT_CPU (1 << 5) /* CPU port */
#define RTL8366S_PORT_ALL (RTL8366S_PORT_1 | \
RTL8366S_PORT_2 | \
RTL8366S_PORT_3 | \
RTL8366S_PORT_4 | \
RTL8366S_PORT_UNKNOWN | \
RTL8366S_PORT_CPU)
#define RTL8366S_PORT_ALL_BUT_CPU (RTL8366S_PORT_1 | \
RTL8366S_PORT_2 | \
RTL8366S_PORT_3 | \
RTL8366S_PORT_4 | \
RTL8366S_PORT_UNKNOWN)
#define RTL8366S_PORT_ALL_EXTERNAL (RTL8366S_PORT_1 | \
RTL8366S_PORT_2 | \
RTL8366S_PORT_3 | \
RTL8366S_PORT_4)
#define RTL8366S_PORT_ALL_INTERNAL (RTL8366S_PORT_UNKNOWN | \
RTL8366S_PORT_CPU)
struct rtl8366s {
struct device *parent;
struct rtl8366_smi smi;
struct switch_dev dev;
char buf[4096];
#ifdef CONFIG_RTL8366S_PHY_DEBUG_FS
struct dentry *debugfs_root;
#endif
};
struct rtl8366s_vlan_mc {
u16 reserved2:1;
u16 priority:3;
u16 vid:12;
u16 reserved1:1;
u16 fid:3;
u16 untag:6;
u16 member:6;
};
struct rtl8366s_vlan_4k {
u16 reserved1:4;
u16 vid:12;
u16 reserved2:1;
u16 fid:3;
u16 untag:6;
u16 member:6;
};
#ifdef CONFIG_RTL8366S_PHY_DEBUG_FS
u16 g_dbg_reg;
#endif
struct mib_counter {
unsigned base;
unsigned offset;
unsigned length;
const char *name;
};
static struct mib_counter rtl8366s_mib_counters[RTL8366S_MIB_COUNT] = {
{ 0, 0, 4, "IfInOctets" },
{ 0, 4, 4, "EtherStatsOctets" },
{ 0, 8, 2, "EtherStatsUnderSizePkts" },
{ 0, 10, 2, "EtherFragments" },
{ 0, 12, 2, "EtherStatsPkts64Octets" },
{ 0, 14, 2, "EtherStatsPkts65to127Octets" },
{ 0, 16, 2, "EtherStatsPkts128to255Octets" },
{ 0, 18, 2, "EtherStatsPkts256to511Octets" },
{ 0, 20, 2, "EtherStatsPkts512to1023Octets" },
{ 0, 22, 2, "EtherStatsPkts1024to1518Octets" },
{ 0, 24, 2, "EtherOversizeStats" },
{ 0, 26, 2, "EtherStatsJabbers" },
{ 0, 28, 2, "IfInUcastPkts" },
{ 0, 30, 2, "EtherStatsMulticastPkts" },
{ 0, 32, 2, "EtherStatsBroadcastPkts" },
{ 0, 34, 2, "EtherStatsDropEvents" },
{ 0, 36, 2, "Dot3StatsFCSErrors" },
{ 0, 38, 2, "Dot3StatsSymbolErrors" },
{ 0, 40, 2, "Dot3InPauseFrames" },
{ 0, 42, 2, "Dot3ControlInUnknownOpcodes" },
{ 0, 44, 4, "IfOutOctets" },
{ 0, 48, 2, "Dot3StatsSingleCollisionFrames" },
{ 0, 50, 2, "Dot3StatMultipleCollisionFrames" },
{ 0, 52, 2, "Dot3sDeferredTransmissions" },
{ 0, 54, 2, "Dot3StatsLateCollisions" },
{ 0, 56, 2, "EtherStatsCollisions" },
{ 0, 58, 2, "Dot3StatsExcessiveCollisions" },
{ 0, 60, 2, "Dot3OutPauseFrames" },
{ 0, 62, 2, "Dot1dBasePortDelayExceededDiscards" },
/*
* The following counters are accessible at a different
* base address.
*/
{ 1, 0, 2, "Dot1dTpPortInDiscards" },
{ 1, 2, 2, "IfOutUcastPkts" },
{ 1, 4, 2, "IfOutMulticastPkts" },
{ 1, 6, 2, "IfOutBroadcastPkts" },
};
#define REG_WR(_smi, _reg, _val) \
do { \
err = rtl8366_smi_write_reg(_smi, _reg, _val); \
if (err) \
return err; \
} while (0)
#define REG_RMW(_smi, _reg, _mask, _val) \
do { \
err = rtl8366_smi_rmwr(_smi, _reg, _mask, _val); \
if (err) \
return err; \
} while (0)
static inline struct rtl8366s *smi_to_rtl8366s(struct rtl8366_smi *smi)
{
return container_of(smi, struct rtl8366s, smi);
}
static inline struct rtl8366s *sw_to_rtl8366s(struct switch_dev *sw)
{
return container_of(sw, struct rtl8366s, dev);
}
static inline struct rtl8366_smi *sw_to_rtl8366_smi(struct switch_dev *sw)
{
struct rtl8366s *rtl = sw_to_rtl8366s(sw);
return &rtl->smi;
}
static int rtl8366s_reset_chip(struct rtl8366_smi *smi)
{
int timeout = 10;
u32 data;
rtl8366_smi_write_reg(smi, RTL8366S_RESET_CTRL_REG,
RTL8366S_CHIP_CTRL_RESET_HW);
do {
msleep(1);
if (rtl8366_smi_read_reg(smi, RTL8366S_RESET_CTRL_REG, &data))
return -EIO;
if (!(data & RTL8366S_CHIP_CTRL_RESET_HW))
break;
} while (--timeout);
if (!timeout) {
printk("Timeout waiting for the switch to reset\n");
return -EIO;
}
return 0;
}
static int rtl8366s_hw_init(struct rtl8366_smi *smi)
{
int err;
/* set maximum packet length to 1536 bytes */
REG_RMW(smi, RTL8366S_SGCR, RTL8366S_SGCR_MAX_LENGTH_MASK,
RTL8366S_SGCR_MAX_LENGTH_1536);
/* enable all ports */
REG_WR(smi, RTL8366S_PECR, 0);
/* disable learning for all ports */
REG_WR(smi, RTL8366S_SSCR0, RTL8366S_PORT_ALL);
/* disable auto ageing for all ports */
REG_WR(smi, RTL8366S_SSCR1, RTL8366S_PORT_ALL);
/* don't drop packets whose DA has not been learned */
REG_RMW(smi, RTL8366S_SSCR2, RTL8366S_SSCR2_DROP_UNKNOWN_DA, 0);
return 0;
}
static int rtl8366s_read_phy_reg(struct rtl8366_smi *smi,
u32 phy_no, u32 page, u32 addr, u32 *data)
{
u32 reg;
int ret;
if (phy_no > RTL8366S_PHY_NO_MAX)
return -EINVAL;
if (page > RTL8366S_PHY_PAGE_MAX)
return -EINVAL;
if (addr > RTL8366S_PHY_ADDR_MAX)
return -EINVAL;
ret = rtl8366_smi_write_reg(smi, RTL8366S_PHY_ACCESS_CTRL_REG,
RTL8366S_PHY_CTRL_READ);
if (ret)
return ret;
reg = 0x8000 | (1 << (phy_no + RTL8366S_PHY_NO_OFFSET)) |
((page << RTL8366S_PHY_PAGE_OFFSET) & RTL8366S_PHY_PAGE_MASK) |
(addr & RTL8366S_PHY_REG_MASK);
ret = rtl8366_smi_write_reg(smi, reg, 0);
if (ret)
return ret;
ret = rtl8366_smi_read_reg(smi, RTL8366S_PHY_ACCESS_DATA_REG, data);
if (ret)
return ret;
return 0;
}
static int rtl8366s_write_phy_reg(struct rtl8366_smi *smi,
u32 phy_no, u32 page, u32 addr, u32 data)
{
u32 reg;
int ret;
if (phy_no > RTL8366S_PHY_NO_MAX)
return -EINVAL;
if (page > RTL8366S_PHY_PAGE_MAX)
return -EINVAL;
if (addr > RTL8366S_PHY_ADDR_MAX)
return -EINVAL;
ret = rtl8366_smi_write_reg(smi, RTL8366S_PHY_ACCESS_CTRL_REG,
RTL8366S_PHY_CTRL_WRITE);
if (ret)
return ret;
reg = 0x8000 | (1 << (phy_no + RTL8366S_PHY_NO_OFFSET)) |
((page << RTL8366S_PHY_PAGE_OFFSET) & RTL8366S_PHY_PAGE_MASK) |
(addr & RTL8366S_PHY_REG_MASK);
ret = rtl8366_smi_write_reg(smi, reg, data);
if (ret)
return ret;
return 0;
}
static int rtl8366_get_mib_counter(struct rtl8366_smi *smi, int counter,
int port, unsigned long long *val)
{
int i;
int err;
u32 addr, data;
u64 mibvalue;
if (port > RTL8366S_NUM_PORTS || counter >= RTL8366S_MIB_COUNT)
return -EINVAL;
switch (rtl8366s_mib_counters[counter].base) {
case 0:
addr = RTL8366S_MIB_COUNTER_BASE +
RTL8366S_MIB_COUNTER_PORT_OFFSET * port;
break;
case 1:
addr = RTL8366S_MIB_COUNTER_BASE2 +
RTL8366S_MIB_COUNTER_PORT_OFFSET2 * port;
break;
default:
return -EINVAL;
}
addr += rtl8366s_mib_counters[counter].offset;
/*
* Writing access counter address first
* then ASIC will prepare 64bits counter wait for being retrived
*/
data = 0; /* writing data will be discard by ASIC */
err = rtl8366_smi_write_reg(smi, addr, data);
if (err)
return err;
/* read MIB control register */
err = rtl8366_smi_read_reg(smi, RTL8366S_MIB_CTRL_REG, &data);
if (err)
return err;
if (data & RTL8366S_MIB_CTRL_BUSY_MASK)
return -EBUSY;
if (data & RTL8366S_MIB_CTRL_RESET_MASK)
return -EIO;
mibvalue = 0;
for (i = rtl8366s_mib_counters[counter].length; i > 0; i--) {
err = rtl8366_smi_read_reg(smi, addr + (i - 1), &data);
if (err)
return err;
mibvalue = (mibvalue << 16) | (data & 0xFFFF);
}
*val = mibvalue;
return 0;
}
static int rtl8366s_get_vlan_4k(struct rtl8366_smi *smi, u32 vid,
struct rtl8366_vlan_4k *vlan4k)
{
struct rtl8366s_vlan_4k vlan4k_priv;
int err;
u32 data;
u16 *tableaddr;
memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k));
vlan4k_priv.vid = vid;
if (vid >= RTL8366S_NUM_VIDS)
return -EINVAL;
tableaddr = (u16 *)&vlan4k_priv;
/* write VID */
data = *tableaddr;
err = rtl8366_smi_write_reg(smi, RTL8366S_VLAN_TABLE_WRITE_BASE, data);
if (err)
return err;
/* write table access control word */
err = rtl8366_smi_write_reg(smi, RTL8366S_TABLE_ACCESS_CTRL_REG,
RTL8366S_TABLE_VLAN_READ_CTRL);
if (err)
return err;
err = rtl8366_smi_read_reg(smi, RTL8366S_VLAN_TABLE_READ_BASE, &data);
if (err)
return err;
*tableaddr = data;
tableaddr++;
err = rtl8366_smi_read_reg(smi, RTL8366S_VLAN_TABLE_READ_BASE + 1,
&data);
if (err)
return err;
*tableaddr = data;
vlan4k->vid = vid;
vlan4k->untag = vlan4k_priv.untag;
vlan4k->member = vlan4k_priv.member;
vlan4k->fid = vlan4k_priv.fid;
return 0;
}
static int rtl8366s_set_vlan_4k(struct rtl8366_smi *smi,
const struct rtl8366_vlan_4k *vlan4k)
{
struct rtl8366s_vlan_4k vlan4k_priv;
int err;
u32 data;
u16 *tableaddr;
if (vlan4k->vid >= RTL8366S_NUM_VIDS ||
vlan4k->member > RTL8366S_PORT_ALL ||
vlan4k->untag > RTL8366S_PORT_ALL ||
vlan4k->fid > RTL8366S_FIDMAX)
return -EINVAL;
vlan4k_priv.vid = vlan4k->vid;
vlan4k_priv.untag = vlan4k->untag;
vlan4k_priv.member = vlan4k->member;
vlan4k_priv.fid = vlan4k->fid;
tableaddr = (u16 *)&vlan4k_priv;
data = *tableaddr;
err = rtl8366_smi_write_reg(smi, RTL8366S_VLAN_TABLE_WRITE_BASE, data);
if (err)
return err;
tableaddr++;
data = *tableaddr;
err = rtl8366_smi_write_reg(smi, RTL8366S_VLAN_TABLE_WRITE_BASE + 1,
data);
if (err)
return err;
/* write table access control word */
err = rtl8366_smi_write_reg(smi, RTL8366S_TABLE_ACCESS_CTRL_REG,
RTL8366S_TABLE_VLAN_WRITE_CTRL);
return err;
}
static int rtl8366s_get_vlan_mc(struct rtl8366_smi *smi, u32 index,
struct rtl8366_vlan_mc *vlanmc)
{
struct rtl8366s_vlan_mc vlanmc_priv;
int err;
u32 addr;
u32 data;
u16 *tableaddr;
memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc));
if (index >= RTL8366S_NUM_VLANS)
return -EINVAL;
tableaddr = (u16 *)&vlanmc_priv;
addr = RTL8366S_VLAN_MEMCONF_BASE + (index << 1);
err = rtl8366_smi_read_reg(smi, addr, &data);
if (err)
return err;
*tableaddr = data;
tableaddr++;
addr = RTL8366S_VLAN_MEMCONF_BASE + 1 + (index << 1);
err = rtl8366_smi_read_reg(smi, addr, &data);
if (err)
return err;
*tableaddr = data;
vlanmc->vid = vlanmc_priv.vid;
vlanmc->priority = vlanmc_priv.priority;
vlanmc->untag = vlanmc_priv.untag;
vlanmc->member = vlanmc_priv.member;
vlanmc->fid = vlanmc_priv.fid;
return 0;
}
static int rtl8366s_set_vlan_mc(struct rtl8366_smi *smi, u32 index,
const struct rtl8366_vlan_mc *vlanmc)
{
struct rtl8366s_vlan_mc vlanmc_priv;
int err;
u32 addr;
u32 data;
u16 *tableaddr;
if (index >= RTL8366S_NUM_VLANS ||
vlanmc->vid >= RTL8366S_NUM_VIDS ||
vlanmc->priority > RTL8366S_PRIORITYMAX ||
vlanmc->member > RTL8366S_PORT_ALL ||
vlanmc->untag > RTL8366S_PORT_ALL ||
vlanmc->fid > RTL8366S_FIDMAX)
return -EINVAL;
vlanmc_priv.vid = vlanmc->vid;
vlanmc_priv.priority = vlanmc->priority;
vlanmc_priv.untag = vlanmc->untag;
vlanmc_priv.member = vlanmc->member;
vlanmc_priv.fid = vlanmc->fid;
addr = RTL8366S_VLAN_MEMCONF_BASE + (index << 1);
tableaddr = (u16 *)&vlanmc_priv;
data = *tableaddr;
err = rtl8366_smi_write_reg(smi, addr, data);
if (err)
return err;
addr = RTL8366S_VLAN_MEMCONF_BASE + 1 + (index << 1);
tableaddr++;
data = *tableaddr;
err = rtl8366_smi_write_reg(smi, addr, data);
if (err)
return err;
return 0;
}
static int rtl8366s_get_mc_index(struct rtl8366_smi *smi, int port, int *val)
{
u32 data;
int err;
if (port >= RTL8366S_NUM_PORTS)
return -EINVAL;
err = rtl8366_smi_read_reg(smi, RTL8366S_PORT_VLAN_CTRL_REG(port),
&data);
if (err)
return err;
*val = (data >> RTL8366S_PORT_VLAN_CTRL_SHIFT(port)) &
RTL8366S_PORT_VLAN_CTRL_MASK;
return 0;
}
static int rtl8366s_set_mc_index(struct rtl8366_smi *smi, int port, int index)
{
if (port >= RTL8366S_NUM_PORTS || index >= RTL8366S_NUM_VLANS)
return -EINVAL;
return rtl8366_smi_rmwr(smi, RTL8366S_PORT_VLAN_CTRL_REG(port),
RTL8366S_PORT_VLAN_CTRL_MASK <<
RTL8366S_PORT_VLAN_CTRL_SHIFT(port),
(index & RTL8366S_PORT_VLAN_CTRL_MASK) <<
RTL8366S_PORT_VLAN_CTRL_SHIFT(port));
}
static int rtl8366s_set_vlan(struct rtl8366_smi *smi, int vid, u32 member,
u32 untag, u32 fid)
{
struct rtl8366_vlan_4k vlan4k;
int err;
int i;
/* Update the 4K table */
err = rtl8366s_get_vlan_4k(smi, vid, &vlan4k);
if (err)
return err;
vlan4k.member = member;
vlan4k.untag = untag;
vlan4k.fid = fid;
err = rtl8366s_set_vlan_4k(smi, &vlan4k);
if (err)
return err;
/* Try to find an existing MC entry for this VID */
for (i = 0; i < RTL8366S_NUM_VLANS; i++) {
struct rtl8366_vlan_mc vlanmc;
err = rtl8366s_get_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
if (vid == vlanmc.vid) {
/* update the MC entry */
vlanmc.member = member;
vlanmc.untag = untag;
vlanmc.fid = fid;
err = rtl8366s_set_vlan_mc(smi, i, &vlanmc);
break;
}
}
return err;
}
static int rtl8366s_get_pvid(struct rtl8366_smi *smi, int port, int *val)
{
struct rtl8366_vlan_mc vlanmc;
int err;
int index;
err = rtl8366s_get_mc_index(smi, port, &index);
if (err)
return err;
err = rtl8366s_get_vlan_mc(smi, index, &vlanmc);
if (err)
return err;
*val = vlanmc.vid;
return 0;
}
static int rtl8366s_mc_is_used(struct rtl8366_smi *smi, int mc_index,
int *used)
{
int err;
int i;
*used = 0;
for (i = 0; i < RTL8366S_NUM_PORTS; i++) {
int index = 0;
err = rtl8366s_get_mc_index(smi, i, &index);
if (err)
return err;
if (mc_index == index) {
*used = 1;
break;
}
}
return 0;
}
static int rtl8366s_set_pvid(struct rtl8366_smi *smi, unsigned port,
unsigned vid)
{
struct rtl8366_vlan_mc vlanmc;
struct rtl8366_vlan_4k vlan4k;
int err;
int i;
/* Try to find an existing MC entry for this VID */
for (i = 0; i < RTL8366S_NUM_VLANS; i++) {
err = rtl8366s_get_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
if (vid == vlanmc.vid) {
err = rtl8366s_set_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
err = rtl8366s_set_mc_index(smi, port, i);
return err;
}
}
/* We have no MC entry for this VID, try to find an empty one */
for (i = 0; i < RTL8366S_NUM_VLANS; i++) {
err = rtl8366s_get_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
if (vlanmc.vid == 0 && vlanmc.member == 0) {
/* Update the entry from the 4K table */
err = rtl8366s_get_vlan_4k(smi, vid, &vlan4k);
if (err)
return err;
vlanmc.vid = vid;
vlanmc.member = vlan4k.member;
vlanmc.untag = vlan4k.untag;
vlanmc.fid = vlan4k.fid;
err = rtl8366s_set_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
err = rtl8366s_set_mc_index(smi, port, i);
return err;
}
}
/* MC table is full, try to find an unused entry and replace it */
for (i = 0; i < RTL8366S_NUM_VLANS; i++) {
int used;
err = rtl8366s_mc_is_used(smi, i, &used);
if (err)
return err;
if (!used) {
/* Update the entry from the 4K table */
err = rtl8366s_get_vlan_4k(smi, vid, &vlan4k);
if (err)
return err;
vlanmc.vid = vid;
vlanmc.member = vlan4k.member;
vlanmc.untag = vlan4k.untag;
vlanmc.fid = vlan4k.fid;
err = rtl8366s_set_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
err = rtl8366s_set_mc_index(smi, port, i);
return err;
}
}
dev_err(smi->parent,
"all VLAN member configurations are in use\n");
return -ENOSPC;
}
static int rtl8366s_vlan_set_vlan(struct rtl8366_smi *smi, int enable)
{
return rtl8366_smi_rmwr(smi, RTL8366S_CHIP_GLOBAL_CTRL_REG,
RTL8366S_CHIP_CTRL_VLAN,
(enable) ? RTL8366S_CHIP_CTRL_VLAN : 0);
}
static int rtl8366s_vlan_set_4ktable(struct rtl8366_smi *smi, int enable)
{
return rtl8366_smi_rmwr(smi, RTL8366S_VLAN_TB_CTRL_REG,
1, (enable) ? 1 : 0);
}
static int rtl8366s_reset_vlan(struct rtl8366_smi *smi)
{
struct rtl8366_vlan_mc vlanmc;
int err;
int i;
/* clear VLAN member configurations */
vlanmc.vid = 0;
vlanmc.priority = 0;
vlanmc.member = 0;
vlanmc.untag = 0;
vlanmc.fid = 0;
for (i = 0; i < RTL8366S_NUM_VLANS; i++) {
err = rtl8366s_set_vlan_mc(smi, i, &vlanmc);
if (err)
return err;
}
for (i = 0; i < RTL8366S_NUM_PORTS; i++) {
if (i == RTL8366S_PORT_CPU)
continue;
err = rtl8366s_set_vlan(smi, (i + 1),
(1 << i) | RTL8366S_PORT_CPU,
(1 << i) | RTL8366S_PORT_CPU,
0);
if (err)
return err;
err = rtl8366s_set_pvid(smi, i, (i + 1));
if (err)
return err;
}
return 0;
}
#ifdef CONFIG_RTL8366S_PHY_DEBUG_FS
static int rtl8366s_debugfs_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t rtl8366s_read_debugfs_mibs(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct rtl8366s *rtl = (struct rtl8366s *)file->private_data;
struct rtl8366_smi *smi = &rtl->smi;
int i, j, len = 0;
char *buf = rtl->buf;
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%-36s %12s %12s %12s %12s %12s %12s\n",
"Counter",
"Port 0", "Port 1", "Port 2",
"Port 3", "Port 4", "Port 5");
for (i = 0; i < ARRAY_SIZE(rtl8366s_mib_counters); ++i) {
len += snprintf(buf + len, sizeof(rtl->buf) - len, "%-36s ",
rtl8366s_mib_counters[i].name);
for (j = 0; j < RTL8366S_NUM_PORTS; ++j) {
unsigned long long counter = 0;
if (!rtl8366_get_mib_counter(smi, i, j, &counter))
len += snprintf(buf + len,
sizeof(rtl->buf) - len,
"%12llu ", counter);
else
len += snprintf(buf + len,
sizeof(rtl->buf) - len,
"%12s ", "error");
}
len += snprintf(buf + len, sizeof(rtl->buf) - len, "\n");
}
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static ssize_t rtl8366s_read_debugfs_vlan_mc(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct rtl8366s *rtl = (struct rtl8366s *)file->private_data;
struct rtl8366_smi *smi = &rtl->smi;
int i, len = 0;
char *buf = rtl->buf;
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%2s %6s %4s %6s %6s %3s\n",
"id", "vid","prio", "member", "untag", "fid");
for (i = 0; i < RTL8366S_NUM_VLANS; ++i) {
struct rtl8366_vlan_mc vlanmc;
rtl8366s_get_vlan_mc(smi, i, &vlanmc);
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%2d %6d %4d 0x%04x 0x%04x %3d\n",
i, vlanmc.vid, vlanmc.priority,
vlanmc.member, vlanmc.untag, vlanmc.fid);
}
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static ssize_t rtl8366s_read_debugfs_reg(struct file *file,
char __user *user_buf,
size_t count, loff_t *ppos)
{
struct rtl8366s *rtl = (struct rtl8366s *)file->private_data;
struct rtl8366_smi *smi = &rtl->smi;
u32 t, reg = g_dbg_reg;
int err, len = 0;
char *buf = rtl->buf;
memset(buf, '\0', sizeof(rtl->buf));
err = rtl8366_smi_read_reg(smi, reg, &t);
if (err) {
len += snprintf(buf, sizeof(rtl->buf),
"Read failed (reg: 0x%04x)\n", reg);
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
len += snprintf(buf, sizeof(rtl->buf), "reg = 0x%04x, val = 0x%04x\n",
reg, t);
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static ssize_t rtl8366s_write_debugfs_reg(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct rtl8366s *rtl = (struct rtl8366s *)file->private_data;
struct rtl8366_smi *smi = &rtl->smi;
unsigned long data;
u32 reg = g_dbg_reg;
int err;
size_t len;
char *buf = rtl->buf;
len = min(count, sizeof(rtl->buf) - 1);
if (copy_from_user(buf, user_buf, len)) {
dev_err(rtl->parent, "copy from user failed\n");
return -EFAULT;
}
buf[len] = '\0';
if (len > 0 && buf[len - 1] == '\n')
buf[len - 1] = '\0';
if (strict_strtoul(buf, 16, &data)) {
dev_err(rtl->parent, "Invalid reg value %s\n", buf);
} else {
err = rtl8366_smi_write_reg(smi, reg, data);
if (err) {
dev_err(rtl->parent,
"writing reg 0x%04x val 0x%04lx failed\n",
reg, data);
}
}
return count;
}
static const struct file_operations fops_rtl8366s_regs = {
.read = rtl8366s_read_debugfs_reg,
.write = rtl8366s_write_debugfs_reg,
.open = rtl8366s_debugfs_open,
.owner = THIS_MODULE
};
static const struct file_operations fops_rtl8366s_vlan_mc = {
.read = rtl8366s_read_debugfs_vlan_mc,
.open = rtl8366s_debugfs_open,
.owner = THIS_MODULE
};
static const struct file_operations fops_rtl8366s_mibs = {
.read = rtl8366s_read_debugfs_mibs,
.open = rtl8366s_debugfs_open,
.owner = THIS_MODULE
};
static void rtl8366s_debugfs_init(struct rtl8366s *rtl)
{
struct dentry *node;
struct dentry *root;
if (!rtl->debugfs_root)
rtl->debugfs_root = debugfs_create_dir("rtl8366s", NULL);
if (!rtl->debugfs_root) {
dev_err(rtl->parent, "Unable to create debugfs dir\n");
return;
}
root = rtl->debugfs_root;
node = debugfs_create_x16("reg", S_IRUGO | S_IWUSR, root, &g_dbg_reg);
if (!node) {
dev_err(rtl->parent, "Creating debugfs file '%s' failed\n",
"reg");
return;
}
node = debugfs_create_file("val", S_IRUGO | S_IWUSR, root, rtl,
&fops_rtl8366s_regs);
if (!node) {
dev_err(rtl->parent, "Creating debugfs file '%s' failed\n",
"val");
return;
}
node = debugfs_create_file("vlan_mc", S_IRUSR, root, rtl,
&fops_rtl8366s_vlan_mc);
if (!node) {
dev_err(rtl->parent, "Creating debugfs file '%s' failed\n",
"vlan_mc");
return;
}
node = debugfs_create_file("mibs", S_IRUSR, root, rtl,
&fops_rtl8366s_mibs);
if (!node) {
dev_err(rtl->parent, "Creating debugfs file '%s' failed\n",
"mibs");
return;
}
}
static void rtl8366s_debugfs_remove(struct rtl8366s *rtl)
{
if (rtl->debugfs_root) {
debugfs_remove_recursive(rtl->debugfs_root);
rtl->debugfs_root = NULL;
}
}
#else
static inline void rtl8366s_debugfs_init(struct rtl8366s *rtl) {}
static inline void rtl8366s_debugfs_remove(struct rtl8366s *rtl) {}
#endif /* CONFIG_RTL8366S_PHY_DEBUG_FS */
static int rtl8366s_sw_reset_mibs(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
int err = 0;
if (val->value.i == 1)
err = rtl8366_smi_rmwr(smi, RTL8366S_MIB_CTRL_REG, 0, (1 << 2));
return err;
}
static int rtl8366s_sw_get_vlan_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
u32 data;
if (attr->ofs == 1) {
rtl8366_smi_read_reg(smi, RTL8366S_CHIP_GLOBAL_CTRL_REG, &data);
if (data & RTL8366S_CHIP_CTRL_VLAN)
val->value.i = 1;
else
val->value.i = 0;
} else if (attr->ofs == 2) {
rtl8366_smi_read_reg(smi, RTL8366S_VLAN_TB_CTRL_REG, &data);
if (data & 0x0001)
val->value.i = 1;
else
val->value.i = 0;
}
return 0;
}
static int rtl8366s_sw_get_blinkrate(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
u32 data;
rtl8366_smi_read_reg(smi, RTL8366S_LED_BLINKRATE_REG, &data);
val->value.i = (data & (RTL8366S_LED_BLINKRATE_MASK));
return 0;
}
static int rtl8366s_sw_set_blinkrate(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
if (val->value.i >= 6)
return -EINVAL;
return rtl8366_smi_rmwr(smi, RTL8366S_LED_BLINKRATE_REG,
RTL8366S_LED_BLINKRATE_MASK,
val->value.i);
}
static int rtl8366s_sw_set_vlan_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
if (attr->ofs == 1)
return rtl8366s_vlan_set_vlan(smi, val->value.i);
else
return rtl8366s_vlan_set_4ktable(smi, val->value.i);
}
static const char *rtl8366s_speed_str(unsigned speed)
{
switch (speed) {
case 0:
return "10baseT";
case 1:
return "100baseT";
case 2:
return "1000baseT";
}
return "unknown";
}
static int rtl8366s_sw_get_port_link(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366s *rtl = sw_to_rtl8366s(dev);
struct rtl8366_smi *smi = &rtl->smi;
u32 len = 0, data = 0;
if (val->port_vlan >= RTL8366S_NUM_PORTS)
return -EINVAL;
memset(rtl->buf, '\0', sizeof(rtl->buf));
rtl8366_smi_read_reg(smi, RTL8366S_PORT_LINK_STATUS_BASE +
(val->port_vlan / 2), &data);
if (val->port_vlan % 2)
data = data >> 8;
if (data & RTL8366S_PORT_STATUS_LINK_MASK) {
len = snprintf(rtl->buf, sizeof(rtl->buf),
"port:%d link:up speed:%s %s-duplex %s%s%s",
val->port_vlan,
rtl8366s_speed_str(data &
RTL8366S_PORT_STATUS_SPEED_MASK),
(data & RTL8366S_PORT_STATUS_DUPLEX_MASK) ?
"full" : "half",
(data & RTL8366S_PORT_STATUS_TXPAUSE_MASK) ?
"tx-pause ": "",
(data & RTL8366S_PORT_STATUS_RXPAUSE_MASK) ?
"rx-pause " : "",
(data & RTL8366S_PORT_STATUS_AN_MASK) ?
"nway ": "");
} else {
len = snprintf(rtl->buf, sizeof(rtl->buf), "port:%d link: down",
val->port_vlan);
}
val->value.s = rtl->buf;
val->len = len;
return 0;
}
static int rtl8366s_sw_get_vlan_info(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
int i;
u32 len = 0;
struct rtl8366_vlan_4k vlan4k;
struct rtl8366s *rtl = sw_to_rtl8366s(dev);
struct rtl8366_smi *smi = &rtl->smi;
char *buf = rtl->buf;
int err;
if (val->port_vlan == 0 || val->port_vlan >= RTL8366S_NUM_VLANS)
return -EINVAL;
memset(buf, '\0', sizeof(rtl->buf));
err = rtl8366s_get_vlan_4k(smi, val->port_vlan, &vlan4k);
if (err)
return err;
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"VLAN %d: Ports: '", vlan4k.vid);
for (i = 0; i < RTL8366S_NUM_PORTS; i++) {
if (!(vlan4k.member & (1 << i)))
continue;
len += snprintf(buf + len, sizeof(rtl->buf) - len, "%d%s", i,
(vlan4k.untag & (1 << i)) ? "" : "t");
}
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"', members=%04x, untag=%04x, fid=%u",
vlan4k.member, vlan4k.untag, vlan4k.fid);
val->value.s = buf;
val->len = len;
return 0;
}
static int rtl8366s_sw_set_port_led(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
u32 data;
u32 mask;
u32 reg;
if (val->port_vlan >= RTL8366S_NUM_PORTS ||
(1 << val->port_vlan) == RTL8366S_PORT_UNKNOWN)
return -EINVAL;
if (val->port_vlan == RTL8366S_PORT_NUM_CPU) {
reg = RTL8366S_LED_BLINKRATE_REG;
mask = 0xF << 4;
data = val->value.i << 4;
} else {
reg = RTL8366S_LED_CTRL_REG;
mask = 0xF << (val->port_vlan * 4),
data = val->value.i << (val->port_vlan * 4);
}
return rtl8366_smi_rmwr(smi, RTL8366S_LED_BLINKRATE_REG, mask, data);
}
static int rtl8366s_sw_get_port_led(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
u32 data = 0;
if (val->port_vlan >= RTL8366S_NUM_LEDGROUPS)
return -EINVAL;
rtl8366_smi_read_reg(smi, RTL8366S_LED_CTRL_REG, &data);
val->value.i = (data >> (val->port_vlan * 4)) & 0x000F;
return 0;
}
static int rtl8366s_sw_reset_port_mibs(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
if (val->port_vlan >= RTL8366S_NUM_PORTS)
return -EINVAL;
return rtl8366_smi_rmwr(smi, RTL8366S_MIB_CTRL_REG,
0, (1 << (val->port_vlan + 3)));
}
static int rtl8366s_sw_get_port_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct rtl8366s *rtl = sw_to_rtl8366s(dev);
struct rtl8366_smi *smi = &rtl->smi;
int i, len = 0;
unsigned long long counter = 0;
char *buf = rtl->buf;
if (val->port_vlan >= RTL8366S_NUM_PORTS)
return -EINVAL;
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"Port %d MIB counters\n",
val->port_vlan);
for (i = 0; i < ARRAY_SIZE(rtl8366s_mib_counters); ++i) {
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%-36s: ", rtl8366s_mib_counters[i].name);
if (!rtl8366_get_mib_counter(smi, i, val->port_vlan, &counter))
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%llu\n", counter);
else
len += snprintf(buf + len, sizeof(rtl->buf) - len,
"%s\n", "error");
}
val->value.s = buf;
val->len = len;
return 0;
}
static int rtl8366s_sw_get_vlan_ports(struct switch_dev *dev,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
struct switch_port *port;
struct rtl8366_vlan_4k vlan4k;
int i;
if (val->port_vlan == 0 || val->port_vlan >= RTL8366S_NUM_VLANS)
return -EINVAL;
rtl8366s_get_vlan_4k(smi, val->port_vlan, &vlan4k);
port = &val->value.ports[0];
val->len = 0;
for (i = 0; i < RTL8366S_NUM_PORTS; i++) {
if (!(vlan4k.member & BIT(i)))
continue;
port->id = i;
port->flags = (vlan4k.untag & BIT(i)) ?
0 : BIT(SWITCH_PORT_FLAG_TAGGED);
val->len++;
port++;
}
return 0;
}
static int rtl8366s_sw_set_vlan_ports(struct switch_dev *dev,
struct switch_val *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
struct switch_port *port;
u32 member = 0;
u32 untag = 0;
int i;
if (val->port_vlan == 0 || val->port_vlan >= RTL8366S_NUM_VLANS)
return -EINVAL;
port = &val->value.ports[0];
for (i = 0; i < val->len; i++, port++) {
member |= BIT(port->id);
if (!(port->flags & BIT(SWITCH_PORT_FLAG_TAGGED)))
untag |= BIT(port->id);
}
return rtl8366s_set_vlan(smi, val->port_vlan, member, untag, 0);
}
static int rtl8366s_sw_get_port_pvid(struct switch_dev *dev, int port, int *val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
return rtl8366s_get_pvid(smi, port, val);
}
static int rtl8366s_sw_set_port_pvid(struct switch_dev *dev, int port, int val)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
return rtl8366s_set_pvid(smi, port, val);
}
static int rtl8366s_sw_reset_switch(struct switch_dev *dev)
{
struct rtl8366_smi *smi = sw_to_rtl8366_smi(dev);
int err;
err = rtl8366s_reset_chip(smi);
if (err)
return err;
err = rtl8366s_hw_init(smi);
if (err)
return err;
return rtl8366s_reset_vlan(smi);
}
static struct switch_attr rtl8366s_globals[] = {
{
.type = SWITCH_TYPE_INT,
.name = "enable_vlan",
.description = "Enable VLAN mode",
.set = rtl8366s_sw_set_vlan_enable,
.get = rtl8366s_sw_get_vlan_enable,
.max = 1,
.ofs = 1
}, {
.type = SWITCH_TYPE_INT,
.name = "enable_vlan4k",
.description = "Enable VLAN 4K mode",
.set = rtl8366s_sw_set_vlan_enable,
.get = rtl8366s_sw_get_vlan_enable,
.max = 1,
.ofs = 2
}, {
.type = SWITCH_TYPE_INT,
.name = "reset_mibs",
.description = "Reset all MIB counters",
.set = rtl8366s_sw_reset_mibs,
.get = NULL,
.max = 1
}, {
.type = SWITCH_TYPE_INT,
.name = "blinkrate",
.description = "Get/Set LED blinking rate (0 = 43ms, 1 = 84ms,"
" 2 = 120ms, 3 = 170ms, 4 = 340ms, 5 = 670ms)",
.set = rtl8366s_sw_set_blinkrate,
.get = rtl8366s_sw_get_blinkrate,
.max = 5
},
};
static struct switch_attr rtl8366s_port[] = {
{
.type = SWITCH_TYPE_STRING,
.name = "link",
.description = "Get port link information",
.max = 1,
.set = NULL,
.get = rtl8366s_sw_get_port_link,
}, {
.type = SWITCH_TYPE_INT,
.name = "reset_mib",
.description = "Reset single port MIB counters",
.max = 1,
.set = rtl8366s_sw_reset_port_mibs,
.get = NULL,
}, {
.type = SWITCH_TYPE_STRING,
.name = "mib",
.description = "Get MIB counters for port",
.max = 33,
.set = NULL,
.get = rtl8366s_sw_get_port_mib,
}, {
.type = SWITCH_TYPE_INT,
.name = "led",
.description = "Get/Set port group (0 - 3) led mode (0 - 15)",
.max = 15,
.set = rtl8366s_sw_set_port_led,
.get = rtl8366s_sw_get_port_led,
},
};
static struct switch_attr rtl8366s_vlan[] = {
{
.type = SWITCH_TYPE_STRING,
.name = "info",
.description = "Get vlan information",
.max = 1,
.set = NULL,
.get = rtl8366s_sw_get_vlan_info,
},
};
/* template */
static struct switch_dev rtl8366_switch_dev = {
.name = "RTL8366S",
.cpu_port = RTL8366S_PORT_NUM_CPU,
.ports = RTL8366S_NUM_PORTS,
.vlans = RTL8366S_NUM_VLANS,
.attr_global = {
.attr = rtl8366s_globals,
.n_attr = ARRAY_SIZE(rtl8366s_globals),
},
.attr_port = {
.attr = rtl8366s_port,
.n_attr = ARRAY_SIZE(rtl8366s_port),
},
.attr_vlan = {
.attr = rtl8366s_vlan,
.n_attr = ARRAY_SIZE(rtl8366s_vlan),
},
.get_vlan_ports = rtl8366s_sw_get_vlan_ports,
.set_vlan_ports = rtl8366s_sw_set_vlan_ports,
.get_port_pvid = rtl8366s_sw_get_port_pvid,
.set_port_pvid = rtl8366s_sw_set_port_pvid,
.reset_switch = rtl8366s_sw_reset_switch,
};
static int rtl8366s_switch_init(struct rtl8366s *rtl)
{
struct switch_dev *dev = &rtl->dev;
int err;
memcpy(dev, &rtl8366_switch_dev, sizeof(struct switch_dev));
dev->priv = rtl;
dev->devname = dev_name(rtl->parent);
err = register_switch(dev, NULL);
if (err)
dev_err(rtl->parent, "switch registration failed\n");
return err;
}
static void rtl8366s_switch_cleanup(struct rtl8366s *rtl)
{
unregister_switch(&rtl->dev);
}
static int rtl8366s_mii_read(struct mii_bus *bus, int addr, int reg)
{
struct rtl8366_smi *smi = bus->priv;
u32 val = 0;
int err;
err = rtl8366s_read_phy_reg(smi, addr, 0, reg, &val);
if (err)
return 0xffff;
return val;
}
static int rtl8366s_mii_write(struct mii_bus *bus, int addr, int reg, u16 val)
{
struct rtl8366_smi *smi = bus->priv;
u32 t;
int err;
err = rtl8366s_write_phy_reg(smi, addr, 0, reg, val);
/* flush write */
(void) rtl8366s_read_phy_reg(smi, addr, 0, reg, &t);
return err;
}
static int rtl8366s_mii_bus_match(struct mii_bus *bus)
{
return (bus->read == rtl8366s_mii_read &&
bus->write == rtl8366s_mii_write);
}
static int rtl8366s_setup(struct rtl8366s *rtl)
{
struct rtl8366_smi *smi = &rtl->smi;
int ret;
rtl8366s_debugfs_init(rtl);
ret = rtl8366s_reset_chip(smi);
if (ret)
return ret;
ret = rtl8366s_hw_init(smi);
return ret;
}
static int rtl8366s_detect(struct rtl8366_smi *smi)
{
u32 chip_id = 0;
u32 chip_ver = 0;
int ret;
ret = rtl8366_smi_read_reg(smi, RTL8366S_CHIP_ID_REG, &chip_id);
if (ret) {
dev_err(smi->parent, "unable to read chip id\n");
return ret;
}
switch (chip_id) {
case RTL8366S_CHIP_ID_8366:
break;
default:
dev_err(smi->parent, "unknown chip id (%04x)\n", chip_id);
return -ENODEV;
}
ret = rtl8366_smi_read_reg(smi, RTL8366S_CHIP_VERSION_CTRL_REG,
&chip_ver);
if (ret) {
dev_err(smi->parent, "unable to read chip version\n");
return ret;
}
dev_info(smi->parent, "RTL%04x ver. %u chip found\n",
chip_id, chip_ver & RTL8366S_CHIP_VERSION_MASK);
return 0;
}
static struct rtl8366_smi_ops rtl8366s_smi_ops = {
.detect = rtl8366s_detect,
.mii_read = rtl8366s_mii_read,
.mii_write = rtl8366s_mii_write,
};
static int __init rtl8366s_probe(struct platform_device *pdev)
{
static int rtl8366_smi_version_printed;
struct rtl8366s_platform_data *pdata;
struct rtl8366s *rtl;
struct rtl8366_smi *smi;
int err;
if (!rtl8366_smi_version_printed++)
printk(KERN_NOTICE RTL8366S_DRIVER_DESC
" version " RTL8366S_DRIVER_VER"\n");
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data specified\n");
err = -EINVAL;
goto err_out;
}
rtl = kzalloc(sizeof(*rtl), GFP_KERNEL);
if (!rtl) {
dev_err(&pdev->dev, "no memory for private data\n");
err = -ENOMEM;
goto err_out;
}
rtl->parent = &pdev->dev;
smi = &rtl->smi;
smi->parent = &pdev->dev;
smi->gpio_sda = pdata->gpio_sda;
smi->gpio_sck = pdata->gpio_sck;
smi->ops = &rtl8366s_smi_ops;
err = rtl8366_smi_init(smi);
if (err)
goto err_free_rtl;
platform_set_drvdata(pdev, rtl);
err = rtl8366s_setup(rtl);
if (err)
goto err_clear_drvdata;
err = rtl8366s_switch_init(rtl);
if (err)
goto err_clear_drvdata;
return 0;
err_clear_drvdata:
platform_set_drvdata(pdev, NULL);
rtl8366_smi_cleanup(smi);
err_free_rtl:
kfree(rtl);
err_out:
return err;
}
static int rtl8366s_phy_config_init(struct phy_device *phydev)
{
if (!rtl8366s_mii_bus_match(phydev->bus))
return -EINVAL;
return 0;
}
static int rtl8366s_phy_config_aneg(struct phy_device *phydev)
{
return 0;
}
static struct phy_driver rtl8366s_phy_driver = {
.phy_id = 0x001cc960,
.name = "Realtek RTL8366S",
.phy_id_mask = 0x1ffffff0,
.features = PHY_GBIT_FEATURES,
.config_aneg = rtl8366s_phy_config_aneg,
.config_init = rtl8366s_phy_config_init,
.read_status = genphy_read_status,
.driver = {
.owner = THIS_MODULE,
},
};
static int __devexit rtl8366s_remove(struct platform_device *pdev)
{
struct rtl8366s *rtl = platform_get_drvdata(pdev);
if (rtl) {
rtl8366s_switch_cleanup(rtl);
rtl8366s_debugfs_remove(rtl);
platform_set_drvdata(pdev, NULL);
rtl8366_smi_cleanup(&rtl->smi);
kfree(rtl);
}
return 0;
}
static struct platform_driver rtl8366s_driver = {
.driver = {
.name = RTL8366S_DRIVER_NAME,
.owner = THIS_MODULE,
},
.probe = rtl8366s_probe,
.remove = __devexit_p(rtl8366s_remove),
};
static int __init rtl8366s_module_init(void)
{
int ret;
ret = platform_driver_register(&rtl8366s_driver);
if (ret)
return ret;
ret = phy_driver_register(&rtl8366s_phy_driver);
if (ret)
goto err_platform_unregister;
return 0;
err_platform_unregister:
platform_driver_unregister(&rtl8366s_driver);
return ret;
}
module_init(rtl8366s_module_init);
static void __exit rtl8366s_module_exit(void)
{
phy_driver_unregister(&rtl8366s_phy_driver);
platform_driver_unregister(&rtl8366s_driver);
}
module_exit(rtl8366s_module_exit);
MODULE_DESCRIPTION(RTL8366S_DRIVER_DESC);
MODULE_VERSION(RTL8366S_DRIVER_VER);
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
MODULE_AUTHOR("Antti Seppälä <a.seppala@gmail.com>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" RTL8366S_DRIVER_NAME);