You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openwrt/target/linux/samsung/files-4.14/drivers/mtd/nand/s5pxx_nand.c

499 lines
13 KiB
C

/*
* Copyright (c) 2018 Jianhui Zhao <jianhuizhao329@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/of_platform.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/jiffies.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#define S5P_NFCONF 0x00
#define S5P_NFCONT 0x04
#define S5P_NFCMD 0x08
#define S5P_NFADDR 0x0c
#define S5P_NFDATA 0x10
#define S5P_NFMECCDATA0 0x14
#define S5P_NFMECCDATA1 0x18
#define S5P_NFSECCDATA 0x1c
#define S5P_NFSBLK 0x20
#define S5P_NFEBLK 0x24
#define S5P_NFSTAT 0x28
#define S5P_NFMECCERR0 0x2c
#define S5P_NFMECCERR1 0x30
#define S5P_NFMECC0 0x34
#define S5P_NFMECC1 0x38
#define S5P_NFSECC 0x3c
#define S5P_NFMLCBITPT 0x40
#define S5P_NF8ECCERR0 0x44
#define S5P_NF8ECCERR1 0x48
#define S5P_NF8ECCERR2 0x4C
#define S5P_NFM8ECC0 0x50
#define S5P_NFM8ECC1 0x54
#define S5P_NFM8ECC2 0x58
#define S5P_NFM8ECC3 0x5C
#define S5P_NFMLC8BITPT0 0x60
#define S5P_NFMLC8BITPT1 0x64
#define S5P_NFECCCONF 0x00
#define S5P_NFECCCONT 0x20
#define S5P_NFECCSTAT 0x30
#define S5P_NFECCSECSTAT 0x40
#define S5P_NFECCPRGECC 0x90
#define S5P_NFECCERL 0xC0
#define S5P_NFECCERP 0xF0
#define S5P_NFCONF_NANDBOOT (1 << 31)
#define S5P_NFCONF_ECCCLKCON (1 << 30)
#define S5P_NFCONF_ECC_MLC (1 << 24)
#define S5P_NFCONF_ECC_1BIT (0 << 23)
#define S5P_NFCONF_ECC_4BIT (2 << 23)
#define S5P_NFCONF_ECC_8BIT (1 << 23)
#define S5P_NFCONF_TACLS(x) ((x) << 12)
#define S5P_NFCONF_TWRPH0(x) ((x) << 8)
#define S5P_NFCONF_TWRPH1(x) ((x) << 4)
#define S5P_NFCONF_MLC (1 << 3)
#define S5P_NFCONF_PAGESIZE (1 << 2)
#define S5P_NFCONF_ADDRCYCLE (1 << 1)
#define S5P_NFCONF_BUSWIDTH (1 << 0)
#define S5P_NFCONT_ECC_ENC (1 << 18)
#define S5P_NFCONT_LOCKTGHT (1 << 17)
#define S5P_NFCONT_LOCKSOFT (1 << 16)
#define S5P_NFCONT_MECCLOCK (1 << 7)
#define S5P_NFCONT_SECCLOCK (1 << 6)
#define S5P_NFCONT_INITMECC (1 << 5)
#define S5P_NFCONT_INITSECC (1 << 4)
#define S5P_NFCONT_nFCE1 (1 << 2)
#define S5P_NFCONT_nFCE0 (1 << 1)
#define S5P_NFCONT_MODE (1 << 0)
#define S5P_NFSTAT_READY (1 << 0)
#define S5P_NFECCCONT_MECCRESET (1 << 0)
#define S5P_NFECCCONT_MECCINIT (1 << 2)
#define S5P_NFECCCONT_ECCDIRWR (1 << 16)
#define S5P_NFECCSTAT_ECCBUSY (1 << 31)
enum s5p_cpu_type {
TYPE_S5PV210,
};
struct s5p_nand_host {
struct nand_chip nand_chip;
void __iomem *nf_base;
void __iomem *ecc_base;
struct clk *clk[2];
enum s5p_cpu_type cpu_type;
};
/*
* See "S5PV210 iROM Application Note" for recommended ECC layout
* ECC layout for 8-bit ECC (13 bytes/page)
* Compatible with bl0 bootloader, see iROM appnote
*/
/* new oob placement block for use with hardware ecc generation
*/
static int s5pcxx_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 12;
oobregion->length = 52;
return 0;
}
static int s5pcxx_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 2;
oobregion->length = 10;
return 0;
}
static const struct mtd_ooblayout_ops s5pcxx_ooblayout_ops = {
.ecc = s5pcxx_ooblayout_ecc,
.free = s5pcxx_ooblayout_free,
};
static inline void rwl(void *reg, uint32_t rst, uint32_t set)
{
uint32_t r;
r = readl(reg);
r &= ~rst;
r |= set;
writel(r, reg);
}
/*
* Hardware specific access to control-lines function
*/
static void s5p_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd->priv;
struct s5p_nand_host *host = nand_chip->priv;
if (dat == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(dat, host->nf_base + S5P_NFCMD);
else
writeb(dat, host->nf_base + S5P_NFADDR);
}
/*
* Function for checking device ready pin
*/
static int s5p_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct s5p_nand_host *host = nand_chip->priv;
/* it's to check the RnB nand signal bit and
* return to device ready condition in nand_base.c
*/
return readl(host->nf_base + S5P_NFSTAT) & S5P_NFSTAT_READY;
}
static void s3_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct s5p_nand_host *host = nand_chip->priv;
u32 value = readl(host->nf_base + S5P_NFCONT);
if (chip == -1)
value |= S5P_NFCONT_nFCE0; /* deselect */
else
value &= ~S5P_NFCONT_nFCE0; /* select */
writel(value, host->nf_base + S5P_NFCONT);
}
static void s5pcxx_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *chip = mtd->priv;
struct s5p_nand_host *host = chip->priv;
uint32_t reg;
/* Set ECC mode */
reg = 3; /* 8-bit */
reg |= (chip->ecc.size - 1) << 16;
writel(reg, host->ecc_base + S5P_NFECCCONF);
/* Set ECC direction */
rwl(host->ecc_base + S5P_NFECCCONT, S5P_NFECCCONT_ECCDIRWR,
(mode == NAND_ECC_WRITE) ? S5P_NFECCCONT_ECCDIRWR : 0);
/* Reset status bits */
rwl(host->ecc_base + S5P_NFECCSTAT, 0, (1 << 24) | (1 << 25));
/* Unlock ECC */
rwl(host->nf_base + S5P_NFCONT, S5P_NFCONT_MECCLOCK, 0);
/* Initialize ECC */
rwl(host->ecc_base +S5P_NFECCCONT, 0, S5P_NFECCCONT_MECCINIT);
}
static void readecc(void *eccbase, uint8_t *ecc_code, unsigned ecc_len)
{
uint32_t i, j, reg;
for (i = 0; i < ecc_len; i += 4) {
reg = readl(eccbase + i);
for (j = 0; (j < 4) && (i + j < ecc_len); ++j) {
ecc_code[i + j] = reg & 0xFF;
reg >>= 8;
}
}
}
static int s5pcxx_nand_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code)
{
struct nand_chip *chip = mtd->priv;
struct s5p_nand_host *host = chip->priv;
/* Lock ECC */
rwl(host->nf_base + S5P_NFCONT, 0, S5P_NFCONT_MECCLOCK);
if (ecc_code) /* NAND_ECC_WRITE */ {
/* ECC encoding is completed */
while (!(readl(host->ecc_base + S5P_NFECCSTAT) & (1 << 25)));
readecc(host->ecc_base + S5P_NFECCPRGECC, ecc_code, chip->ecc.bytes);
} else { /* NAND_ECC_READ */
/* ECC decoding is completed */
while (!(readl(host->ecc_base + S5P_NFECCSTAT) & (1 << 24)));
}
return 0;
}
static int s5pcxx_nand_correct_data(struct mtd_info *mtd, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
int ret = 0;
u32 errNo;
u32 erl0, erl1, erl2, erl3, erp0, erp1;
struct nand_chip *chip = mtd->priv;
struct s5p_nand_host *host = chip->priv;
/* Wait until the 8-bit ECC decoding engine is Idle */
while (readl(host->ecc_base + S5P_NFECCSTAT) & (1 << 31));
errNo = readl(host->ecc_base + S5P_NFECCSECSTAT) & 0x1F;
erl0 = readl(host->ecc_base + S5P_NFECCERL);
erl1 = readl(host->ecc_base + S5P_NFECCERL + 0x04);
erl2 = readl(host->ecc_base + S5P_NFECCERL + 0x08);
erl3 = readl(host->ecc_base + S5P_NFECCERL + 0x0C);
erp0 = readl(host->ecc_base + S5P_NFECCERP);
erp1 = readl(host->ecc_base + S5P_NFECCERP + 0x04);
switch (errNo) {
case 8:
dat[(erl3 >> 16) & 0x3FF] ^= (erp1 >> 24) & 0xFF;
case 7:
dat[erl3 & 0x3FF] ^= (erp1 >> 16) & 0xFF;
case 6:
dat[(erl2 >> 16) & 0x3FF] ^= (erp1 >> 8) & 0xFF;
case 5:
dat[erl2 & 0x3FF] ^= erp1 & 0xFF;
case 4:
dat[(erl1 >> 16) & 0x3FF] ^= (erp0 >> 24) & 0xFF;
case 3:
dat[erl1 & 0x3FF] ^= (erp0 >> 16) & 0xFF;
case 2:
dat[(erl0 >> 16) & 0x3FF] ^= (erp0 >> 8) & 0xFF;
case 1:
dat[erl0 & 0x3FF] ^= erp0 & 0xFF;
case 0:
break;
default:
ret = -1;
printk("ECC uncorrectable error detected:%d\n", errNo);
break;
}
return ret;
}
static int s5pcxx_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
struct mtd_oob_region oobregion = { };
int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
uint8_t *oobecc;
int col, stat;
/* Read the OOB area first */
chip->ecc.read_oob(mtd, chip, page);
mtd_ooblayout_ecc(mtd, 0, &oobregion);
oobecc = chip->oob_poi + oobregion.offset;
for (i = 0, col = 0; eccsteps; eccsteps--, i += eccbytes, buf += eccsize, col += eccsize) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
chip->ecc.hwctl(mtd, NAND_ECC_READ);
chip->read_buf(mtd, buf, eccsize);
chip->write_buf(mtd, oobecc + i, eccbytes);
chip->ecc.calculate(mtd, NULL, NULL);
stat = chip->ecc.correct(mtd, buf, NULL, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
}
return 0;
}
static void s5p_nand_inithw_later(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct s5p_nand_host *host = chip->priv;
u32 value;
value = readl(host->nf_base + S5P_NFCONF);
if (nand_is_slc(chip)) {
value &= ~S5P_NFCONF_MLC;
if (mtd->writesize == 512) {
value |= S5P_NFCONF_PAGESIZE;
} else {
value &= ~S5P_NFCONF_PAGESIZE;
}
} else {
value |= S5P_NFCONF_MLC;
if (mtd->writesize == 4096)
value &= ~S5P_NFCONF_PAGESIZE;
else
value |= S5P_NFCONF_PAGESIZE;
}
}
static void s5p_nand_inithw(struct s5p_nand_host *host)
{
u32 value;
/* Enable NAND Flash Controller */
value = readl(host->nf_base + S5P_NFCONT);
writel(value | S5P_NFCONT_MODE, host->nf_base + S5P_NFCONT);
}
static void s5p_nand_parse_dt(struct s5p_nand_host *host, struct device *dev)
{
host->cpu_type = (enum s5p_cpu_type)of_device_get_match_data(dev);
}
static int s5p_nand_probe(struct platform_device *pdev)
{
int ret;
struct s5p_nand_host *host;
struct nand_chip *nand_chip;
struct mtd_info *mtd;
struct resource *mem;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(struct s5p_nand_host), GFP_KERNEL);
if (!host)
return -ENOMEM;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->nf_base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(host->nf_base))
return PTR_ERR(host->nf_base);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
host->ecc_base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(host->ecc_base))
return PTR_ERR(host->ecc_base);
nand_chip = &host->nand_chip;
nand_chip->priv = host;
nand_set_flash_node(nand_chip, pdev->dev.of_node);
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
mtd->priv = nand_chip;
/* Disable chip select and Enable NAND Flash Controller */
writel((0x1 << 1) | (0x1 << 0), host->nf_base + S5P_NFCONT);
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = host->nf_base + S5P_NFDATA;
nand_chip->IO_ADDR_W = host->nf_base + S5P_NFDATA;
platform_set_drvdata(pdev, host);
/* get the clock source and enable it */
host->clk[0] = devm_clk_get(&pdev->dev, "nandxl");
if (IS_ERR(host->clk[0])) {
dev_err(&pdev->dev, "cannot get clock of nandxl\n");
return -ENOENT;
}
clk_prepare_enable(host->clk[0]);
host->clk[1] = devm_clk_get(&pdev->dev, "nand");
if (IS_ERR(host->clk[1])) {
dev_err(&pdev->dev, "cannot get clock of nand\n");
return -ENOENT;
}
clk_prepare_enable(host->clk[1]);
s5p_nand_parse_dt(host, &pdev->dev);
nand_chip->select_chip = s3_nand_select_chip;
nand_chip->cmd_ctrl = s5p_cmd_ctrl;
nand_chip->dev_ready = s5p_nand_device_ready;
s5p_nand_inithw(host);
ret = nand_scan_ident(mtd, 1, NULL);
if (ret)
return ret;
if (nand_chip->ecc.mode == NAND_ECC_HW) {
nand_chip->ecc.correct = s5pcxx_nand_correct_data;
nand_chip->ecc.calculate = s5pcxx_nand_calculate_ecc;
nand_chip->ecc.hwctl = s5pcxx_nand_enable_hwecc;
nand_chip->ecc.read_page = s5pcxx_nand_read_page_hwecc;
nand_chip->ecc.size = 512;
nand_chip->ecc.bytes = 13;
mtd_set_ooblayout(nand_to_mtd(nand_chip), &s5pcxx_ooblayout_ops);
}
ret = nand_scan_tail(mtd);
if (ret)
return ret;
/* After you get the actual hardware information */
s5p_nand_inithw_later(mtd);
return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
}
static int s5p_nand_remove(struct platform_device *pdev)
{
struct s5p_nand_host *host = platform_get_drvdata(pdev);
nand_release(&host->nand_chip);
clk_disable_unprepare(host->clk[0]); /* nandxl */
clk_disable_unprepare(host->clk[1]); /* nand */
return 0;
}
static const struct of_device_id s5p_nand_match[] = {
{ .compatible = "samsung,s5pv210-nand", .data = TYPE_S5PV210 },
{},
};
MODULE_DEVICE_TABLE(of, s5p_nand_match);
static struct platform_driver s5p_nand_driver = {
.probe = s5p_nand_probe,
.remove = s5p_nand_remove,
.driver = {
.name = "s5p-nand",
.owner = THIS_MODULE,
.of_match_table = s5p_nand_match,
},
};
module_platform_driver(s5p_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jianhui Zhao <jianhuizhao329@gmail.com>");
MODULE_DESCRIPTION("S5Pxx MTD NAND driver");