You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openwrt/target/linux/amazon/files/arch/mips/amazon/dma-core.c

1463 lines
42 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/
//-----------------------------------------------------------------------
/*
* Description:
* Driver for Infineon Amazon DMA
*/
//-----------------------------------------------------------------------
/* Author: Wu Qi Ming[Qi-Ming.Wu@infineon.com]
* Created: 7-April-2004
*/
//-----------------------------------------------------------------------
/* History
* Last changed on: 4-May-2004
* Last changed by: <peng.liu@infineon.com>
* Reason: debug
*/
//-----------------------------------------------------------------------
/* Last changed on: 03-Dec-2004
* Last changed by: peng.liu@infineon.com
* Reason: recover from TPE bug
*/
//000004:fchang 2005/6/2 Modified by Linpeng as described below
//-----------------------------------------------------------------------
/* Last changed on: 28-Jan-2004
* Last changed by: peng.liu@infineon.com
* Reason:
* - handle "out of memory" bug
*/
//000003:tc.chen 2005/06/16 fix memory leak when Tx buffer full (heaving traffic).
//507261:tc.chen 2005/07/26 re-organize code address map to improve performance.
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
#define MODVERSIONS
#endif
#if defined(MODVERSIONS) && !defined(__GENKSYMS__)
#include <linux/modversions.h>
#endif
#ifndef EXPORT_SYMTAB
#define EXPORT_SYMTAB /* need this one 'cause we export symbols */
#endif
#undef DMA_NO_POLLING
/* no TX interrupt handling */
#define NO_TX_INT
/* need for DMA workaround */
#undef AMAZON_DMA_TPE_AAL5_RECOVERY
#ifdef AMAZON_DMA_TPE_AAL5_RECOVERY
#define MAX_SYNC_FAILS 1000000 // 000004:fchang
unsigned int dma_sync_fails = 0;
unsigned int total_dma_tpe_reset = 0;
int (*tpe_reset) (void);
int (*tpe_start) (void);
int (*tpe_inject) (void);
#endif // AMAZON_DMA_TPE_AAL5_RECOVERY
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/selection.h>
#include <linux/kmod.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/uaccess.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/amazon/amazon.h>
#include <asm/amazon/irq.h>
#include <asm/amazon/amazon_dma.h>
#include "dma-core.h"
#define AMAZON_DMA_EMSG(fmt, args...) printk( KERN_ERR "%s: " fmt,__FUNCTION__, ## args)
static irqreturn_t dma_interrupt(int irq, void *dev_id);
extern void mask_and_ack_amazon_irq(unsigned int irq_nr);
/***************************************** global data *******************************************/
u64 *g_desc_list;
dev_list *g_current_dev = NULL;
dev_list *g_head_dev = NULL;
dev_list *g_tail_dev = NULL;
channel_info g_log_chan[CHAN_TOTAL_NUM + 1];
struct proc_dir_entry *g_amazon_dma_dir;
static u8 rx_chan_list_len = 0;
static u8 tx_chan_list_len = 0;
static int rx_chan_list[RX_CHAN_NUM + 1];
static int tx_chan_list[TX_CHAN_NUM + 1];
static u32 comb_isr_mask[CHAN_TOTAL_NUM];
static inline int is_rx_chan(int chan_no)
/*judge if this is an rx channel*/
{
int result = 0;
if (chan_no < RX_CHAN_NUM)
result = 1;
return result;
}
/* Ugly, Channel ON register is badly mapped to channel no. */
static u8 ch_on_mapping[CHAN_TOTAL_NUM] =
{ 0, 1, 2, 3, 6, 7, 10, 4, 5, 8, 9, 11 };
/* Brief: check wether the chan_no is legal
* Parameter: chan_no: logical channel number
* Return: 0 if is not valid
* 1 if is valid
*/
static inline int is_valid_dma_ch(int chan_no)
{
return ((chan_no >= 0) && (chan_no < CHAN_TOTAL_NUM));
}
/* Brief: check whether a channel is open through Channel ON register
* Parameter: chan_no: logical channel number
* Return: 1 channel is open
* 0 not yet
* EINVAL: invalid parameter
*/
static inline int is_channel_open(int chan_no)
{
return (AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) &
(1 << ch_on_mapping[chan_no]));
}
/* Brief: add a list entry
* Description:
* always add to the tail and no redundancy allowed. (i.e. entries are unique)
* 0 : entry deleted
* <0 : not deleted (due to not unique)
*/
static inline int _add_list_entry(int *list, int size_of_list, int entry)
{
int i;
for (i = 0; i < size_of_list; i++) {
if (list[i] == entry)
break;
if (list[i] < 0) {
list[i] = entry;
return 0;
}
}
return -1;
}
/* Brief: delete a list entry
* Description:
* find the entry and remove it. shift all entries behind it one step forward if necessary\
* Return:
* 0 : entry deleted
* <0 : not deleted (due to not found?)
*/
static inline int _delete_list_entry(int *list, int size_of_list,
int entry)
{
int i, j;
for (i = 0; i < size_of_list; i++) {
if (list[i] == entry) {
for (j = i; j < size_of_list; j++) {
list[j] = list[j + 1];
if (list[j + 1] < 0) {
break;
}
}
return 0;
}
}
return -1;
}
/* Brief: enable a channel through Channel ON register
* Parameter: chan_no: logical channel number
* Description:
* Please don't open a channel without a valid descriptor (hardware pitfall)
*/
static inline void open_channel(int chan_no)
{
AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) |= (1 << ch_on_mapping[chan_no]);
if (is_rx_chan(chan_no)) {
if (_add_list_entry(rx_chan_list, RX_CHAN_NUM, chan_no) == 0) {
rx_chan_list_len++;
} else {
AMAZON_DMA_DMSG("cannot add chan %d to open list\n", chan_no);
}
} else {
if (_add_list_entry(tx_chan_list, TX_CHAN_NUM, chan_no) == 0) {
tx_chan_list_len++;
} else {
AMAZON_DMA_DMSG("cannot add chan %d to open list\n", chan_no);
}
}
}
/* Brief: disable a channel through Channel ON register
* Parameter: chan_no: logical channel number
*/
static inline void close_channel(int chan_no)
{
AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) &= ~(1 << ch_on_mapping[chan_no]);
if (is_rx_chan(chan_no)) {
if (_delete_list_entry(rx_chan_list, RX_CHAN_NUM, chan_no) == 0) {
rx_chan_list_len--;
} else {
AMAZON_DMA_DMSG("cannot remove chan %d from open list \n",
chan_no);
}
} else {
if (_delete_list_entry(tx_chan_list, TX_CHAN_NUM, chan_no) == 0) {
tx_chan_list_len--;
} else {
AMAZON_DMA_DMSG("cannot remove chan %d from open list \n",
chan_no);
}
}
}
/* Brief: clear RX interrupt
*/
inline void rx_chan_clear_isr(int chan_no)
{
#ifdef DMA_NO_POLLING
AMAZON_DMA_REG32(AMAZON_DMA_CH0_ISR + chan_no * AMAZON_DMA_CH_STEP) =
(AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
chan_no *
AMAZON_DMA_CH_STEP) & (DMA_ISR_CPT | DMA_ISR_EOP | DMA_ISR_CMDCPT
| DMA_ISR_DURR));
#else
AMAZON_DMA_REG32(AMAZON_DMA_CH0_ISR + chan_no * AMAZON_DMA_CH_STEP) =
(AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
chan_no *
AMAZON_DMA_CH_STEP) & (DMA_ISR_CPT | DMA_ISR_EOP |
DMA_ISR_CMDCPT));
#endif
}
#ifdef AMAZON_DMA_TPE_AAL5_RECOVERY
/* Brief: hacking function, this will reset all descriptors back to DMA
*/
static void dma_reset_all_descriptors(int chan_no)
{
volatile struct rx_desc *rx_desc_p = NULL;
int i;
rx_desc_p =
(struct rx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base;
for (i = 0; i < g_log_chan[chan_no].desc_len; i++) {
rx_desc_p->status.word &=
(~(DMA_DESC_SOP_SET | DMA_DESC_EOP_SET | DMA_DESC_CPT_SET));
rx_desc_p->status.word |=
(DMA_DESC_OWN_DMA | g_log_chan[chan_no].packet_size);
rx_desc_p++;
}
}
/* Brief: Reset DMA descriptors
*/
static void amazon_dma_reset_tpe_rx(int chan_no)
{
struct tx_desc *tx_desc_p = NULL;
int j, i = 0;
// wait until all TX channels stop transmitting
for (j = 9; j <= 10; j++) {
tx_desc_p =
(struct tx_desc *) g_desc_list +
g_log_chan[j].offset_from_base;
for (i = 0; i < g_log_chan[j].desc_len; i++) {
while ((tx_desc_p->status.field.OWN != CPU_OWN)) {
AMAZON_DMA_DMSG("DMA TX in progress\n"); // 000004:fchang
udelay(100);
}
tx_desc_p++;
}
}
if (tpe_reset) {
total_dma_tpe_reset++;
AMAZON_DMA_DMSG
("\n===============resetting TPE========================== \n");
if ((*tpe_reset) ()) {
panic("cannot reset TPE engien\n"); // 000004:fchang
}
} else {
panic("no tpe_reset function\n"); // 000004:fchang
return;
}
dma_reset_all_descriptors(chan_no);
rx_chan_clear_isr(chan_no);
mb();
// send EoP
if (tpe_inject) {
if ((*tpe_inject) ()) {
panic("cannot inject a cell\n"); // 000004:fchang
}
} else {
AMAZON_DMA_EMSG("no tpe_inject function\n");
return;
}
mb();
while (1) {
if (AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
chan_no * AMAZON_DMA_CH_STEP) & (DMA_ISR_CPT)) {
rx_chan_clear_isr(chan_no);
mb();
dma_reset_all_descriptors(chan_no);
if (g_log_chan[chan_no].current_desc ==
(g_log_chan[chan_no].desc_len - 1)) {
g_log_chan[chan_no].current_desc = 0;
} else {
g_log_chan[chan_no].current_desc++;
}
break;
}
mdelay(1);
}
mb();
#if 0
AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) &= ~(1 << ch_on_mapping[chan_no]);
while (AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) &
(1 << ch_on_mapping[chan_no])) {
printk("TPE channel still on\n");
mdelay(1);
}
// AMAZON_DMA_REG32(AMAZON_DMA_CH_RST) = (1<<chan_no);
mb();
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK + chan_no * AMAZON_DMA_CH_STEP) =
0x32;
mb();
rx_chan_clear_isr(chan_no);
dma_reset_all_descriptors(chan_no);
mb();
AMAZON_DMA_REG32(AMAZON_DMA_CH_ON) |= (1 << ch_on_mapping[chan_no]);
// g_log_chan[chan_no].current_desc=0;
mb();
mdelay(1);
#endif
if (tpe_start) {
(*tpe_start) ();
} else {
AMAZON_DMA_EMSG("cannot restart TPE engien\n");
}
}
#endif // AMAZON_DMA_TPE_AAL5_RECOVERY
/* Brief: RX channel interrupt handler
* Parameter: RX channel no
* Description: the interrupt handler for each RX channel
* 1. check descriptor, clear ISR if no incoming packet
* 2. inform upper layer to receive packet (and update descriptors)
*/
inline void rx_chan_intr_handler(int chan_no)
{
volatile struct rx_desc *rx_desc_p = NULL;
/* fetch the current descriptor */
rx_desc_p =
(struct rx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base +
g_log_chan[chan_no].current_desc;
g_log_chan[chan_no].dma_dev->current_rx_chan =
chan_no - g_log_chan[chan_no].dma_dev->logic_rx_chan_base;
// workaround for DMA pitfall: complete bit set happends before the
// other two bits (own,eop) are ready
if ((rx_desc_p->status.field.EoP != 1)
|| (rx_desc_p->status.field.OWN != CPU_OWN)
|| (rx_desc_p->status.field.data_length ==
g_log_chan[chan_no].packet_size)) {
#ifdef AMAZON_DMA_TPE_AAL5_RECOVERY
if (chan_no == 4 || chan_no == 5) {
dma_sync_fails++;
if (dma_sync_fails > MAX_SYNC_FAILS) {
// detect bug
rx_desc_p0 =
(struct rx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base;
rx_desc_p1 =
(struct rx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base + 1;
if ((rx_desc_p0->status.field.OWN == CPU_OWN
&& rx_desc_p0->status.field.EoP != 1)
&& (rx_desc_p1->status.field.OWN == CPU_OWN
&& rx_desc_p1->status.field.EoP != 1)) {
amazon_dma_reset_tpe_rx(chan_no);
dma_sync_fails = 0;
return;
}
dma_sync_fails = 0;
AMAZON_DMA_DMSG("too many times ch:%d\n", chan_no); // 000004:fchang
return;
}
udelay(10); // 000004:fchang
}
#endif // //AMAZON_DMA_TPE_AAL5_RECOVERY
return;
}
/* inform the upper layer to receive the packet */
g_log_chan[chan_no].intr_handler(g_log_chan[chan_no].dma_dev, RCV_INT);
/* check the next descriptor, if still contains the incoming packet,
then do not clear the interrupt status */
rx_desc_p =
(struct rx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base +
g_log_chan[chan_no].current_desc;
if (!
((rx_desc_p->status.field.OWN == CPU_OWN)
&& (rx_desc_p->status.field.C == 1))) {
rx_chan_clear_isr(chan_no);
}
}
/* Brief: TX channel interrupt handler
* Parameter: TX channel no
* Description: the interrupt handler for each TX channel
* 1. check all the descripters,if any of them had transmitted a packet, then free buffer
* because we cannot garantee the which one has already transmitted out, we have to go through all the descriptors here
* 2. clear the interrupt status bit
*/
inline void tx_chan_intr_handler(int chan_no)
{
struct tx_desc *tx_desc_p = NULL;
int i = 0;
tx_desc_p =
(struct tx_desc *) g_desc_list +
g_log_chan[chan_no].offset_from_base;
for (i = 0; i < g_log_chan[chan_no].desc_len; i++) {
if ((tx_desc_p->status.field.OWN == CPU_OWN)
&& (tx_desc_p->status.field.C == 1)) {
/* if already transmitted, then free the buffer */
g_log_chan[chan_no].
buffer_free((u8 *) __va(tx_desc_p->Data_Pointer),
g_log_chan[chan_no].opt[i]);
tx_desc_p->status.field.C = 0;
/* inform the upper layer about the completion of the
transmitted packet, the upper layer may want to free the
packet */
g_log_chan[chan_no].intr_handler(g_log_chan[chan_no].dma_dev,
TRANSMIT_CPT_INT);
}
tx_desc_p++;
}
/* after all these operations, clear the interrupt status bit */
AMAZON_DMA_REG32(AMAZON_DMA_CH0_ISR + chan_no * AMAZON_DMA_CH_STEP) =
(AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
chan_no *
AMAZON_DMA_CH_STEP) & (DMA_ISR_CPT | DMA_ISR_EOP |
DMA_ISR_CMDCPT));
}
/* Brief: DMA interrupt handler
*/
static irqreturn_t dma_interrupt(int irq, void *dev_id)
{
int i = 0;
int chan_no;
u32 isr = 0;
#ifdef NO_TX_INT // 000004:fchang
static int cnt = 0; // 000004:fchang
#endif // 000004:fchang
while ((isr =
AMAZON_DMA_REG32(AMAZON_DMA_COMB_ISR)) & (COMB_ISR_RX_MASK |
COMB_ISR_TX_MASK)) {
if (isr & COMB_ISR_RX_MASK) {
// RX Channels: start WFQ algorithm
chan_no = CHAN_TOTAL_NUM;
for (i = 0; i < RX_CHAN_NUM; i++) {
if ((isr & (comb_isr_mask[i]))
&& (g_log_chan[i].weight > 0)) {
if (g_log_chan[chan_no].weight < g_log_chan[i].weight) {
chan_no = i;
}
}
}
if (chan_no < CHAN_TOTAL_NUM) {
rx_chan_intr_handler(chan_no);
} else {
for (i = 0; i < RX_CHAN_NUM; i++) {
g_log_chan[i].weight = g_log_chan[i].default_weight;
}
}
}
#ifdef NO_TX_INT
cnt++;
if (cnt == 10) {
cnt = 0;
for (i = 0; i < tx_chan_list_len; i++) {
if (AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
tx_chan_list[i] *
AMAZON_DMA_CH_STEP) & (DMA_ISR_CPT | DMA_ISR_EOP)) {
tx_chan_intr_handler(tx_chan_list[i]);
}
}
}
#else
if (isr & COMB_ISR_TX_MASK) {
// TX channels: RR
for (i = 0; i < tx_chan_list_len; i++) {
if (isr & (comb_isr_mask[tx_chan_list[i]])) {
tx_chan_intr_handler(tx_chan_list[i]);
}
}
}
#endif
} // while
return IRQ_HANDLED;
}
/* Brief: read a packet from DMA RX channel
* Parameter:
* Return: packet length
* Description:
* This is called back in a context of DMA interrupt
* 1. prepare new descriptor
* 2. read data
* 3. update WFQ weight
*/
//507261:tc.chen int dma_device_read(struct dma_device_info* dma_dev, u8** dataptr, void** opt)
int asmlinkage dma_device_read(struct dma_device_info *dma_dev,
u8 ** dataptr, void **opt)
{
u8 *buf;
int len;
int chan_no = 0;
int byte_offset = 0;
struct rx_desc *rx_desc_p;
void *p = NULL;
int current_desc;
chan_no = dma_dev->logic_rx_chan_base + dma_dev->current_rx_chan;
current_desc = g_log_chan[chan_no].current_desc;
rx_desc_p =
(struct rx_desc *) (g_desc_list +
g_log_chan[chan_no].offset_from_base +
current_desc);
buf = (u8 *) __va(rx_desc_p->Data_Pointer); /* extract the virtual
address of the data
pointer */
len = rx_desc_p->status.field.data_length; /* extract the data length */
#ifndef CONFIG_MIPS_UNCACHED
dma_cache_inv((unsigned long) buf, len);
#endif // CONFIG_MIPS_UNCACHED
*(u32 *) dataptr = (u32) buf;
if (opt) {
*(int *) opt = (int) g_log_chan[chan_no].opt[current_desc]; /* read
out
the
opt
information */
}
buf =
(u8 *) g_log_chan[chan_no].buffer_alloc(g_log_chan[chan_no].
packet_size, &byte_offset,
&p);
// should check null!!!!
if (buf == NULL || p == NULL) {
*(u32 *) dataptr = 0;
*(int *) opt = 0;
len = 0;
} else {
g_log_chan[chan_no].opt[current_desc] = p;
/* reduce the weight for WFQ algorithm */
g_log_chan[chan_no].weight -= len;
rx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) buf);
}
if (current_desc == g_log_chan[chan_no].desc_len - 1) {
current_desc = 0;
} else {
current_desc++;
}
g_log_chan[chan_no].current_desc = current_desc;
rx_desc_p->status.word = DMA_DESC_OWN_DMA
| (byte_offset << DMA_DESC_BYTEOFF_SHIFT)
| g_log_chan[chan_no].packet_size;
return len;
}
/* Brief: write a packet through DMA RX channel to peripheral
* Parameter:
* Return: packet length
* Description:
*
*/
u64 dma_tx_drop = 0;
//507261:tc.chen int dma_device_write(struct dma_device_info* dma_dev, u8* dataptr, int len,void* opt)
int asmlinkage dma_device_write(struct dma_device_info *dma_dev,
u8 * dataptr, int len, void *opt)
{
int chan_no = 0;
struct tx_desc *tx_desc_p;
int byte_offset = 0;
int current_desc;
static int cnt = 0; // 000004:fchang
unsigned long flag;
local_irq_save(flag);
chan_no = dma_dev->logic_tx_chan_base + dma_dev->current_tx_chan;
current_desc = g_log_chan[chan_no].current_desc;
tx_desc_p =
(struct tx_desc *) (g_desc_list +
g_log_chan[chan_no].offset_from_base +
current_desc);
// 000003:tc.chen if(tx_desc_p->status.field.OWN==DMA_OWN){
if (tx_desc_p->status.field.OWN == DMA_OWN || tx_desc_p->status.field.C == 1) { // 000003:tc.chen
AMAZON_DMA_DMSG("no TX desc for CPU, drop packet\n");
dma_tx_drop++;
g_log_chan[chan_no].intr_handler(dma_dev, TX_BUF_FULL_INT);
local_irq_restore(flag);
return 0;
}
g_log_chan[chan_no].opt[current_desc] = opt;
/* byte offset----to adjust the starting address of the data buffer,
should be multiple of the burst length. */
byte_offset =
((u32) CPHYSADDR((u32) dataptr)) % (g_log_chan[chan_no].burst_len *
4);
#ifndef CONFIG_MIPS_UNCACHED
dma_cache_wback((unsigned long) dataptr, len);
wmb();
#endif // CONFIG_MIPS_UNCACHED
tx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) dataptr) - byte_offset;
wmb();
tx_desc_p->status.word = DMA_DESC_OWN_DMA
| DMA_DESC_SOP_SET
| DMA_DESC_EOP_SET | (byte_offset << DMA_DESC_BYTEOFF_SHIFT)
| len;
wmb();
if (is_channel_open(chan_no) == 0) {
// turn on if necessary
open_channel(chan_no);
}
#ifdef DMA_NO_POLLING
if ((AMAZON_DMA_REG32
(AMAZON_DMA_CH0_ISR +
chan_no * AMAZON_DMA_CH_STEP) & (DMA_ISR_DURR | DMA_ISR_CPT)) ==
(DMA_ISR_DURR)) {
// clear DURR if (CPT is AND set and DURR is set)
AMAZON_DMA_REG32(AMAZON_DMA_CH0_ISR +
chan_no * AMAZON_DMA_CH_STEP) = DMA_ISR_DURR;
}
#endif
if (current_desc == (g_log_chan[chan_no].desc_len - 1)) {
current_desc = 0;
} else {
current_desc++;
}
g_log_chan[chan_no].current_desc = current_desc;
tx_desc_p =
(struct tx_desc *) (g_desc_list +
g_log_chan[chan_no].offset_from_base +
current_desc);
// 000003:tc.chen if(tx_desc_p->status.field.OWN==DMA_OWN){
if (tx_desc_p->status.field.OWN == DMA_OWN || tx_desc_p->status.field.C == 1) { // 000003:tc.chen
g_log_chan[chan_no].intr_handler(dma_dev, TX_BUF_FULL_INT);
}
#ifdef NO_TX_INT
//000004:fchang Start
cnt++;
if (cnt == 5) {
cnt = 0;
tx_chan_intr_handler(chan_no);
}
//000004:fchang End
#endif
local_irq_restore(flag); // 000004:fchang
return len;
}
int desc_list_proc_read(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
int i;
u32 *p = (u32 *) g_desc_list;
int len = 0;
len += sprintf(buf + len, "descriptor list:\n");
for (i = 0; i < 120; i++) {
len += sprintf(buf + len, "%d\n", i);
len += sprintf(buf + len, "%08x\n", *(p + i * 2 + 1));
len += sprintf(buf + len, "%08x\n", *(p + i * 2));
}
return len;
}
int channel_weight_proc_read(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
// int i=0;
int len = 0;
len += sprintf(buf + len, "Qos dma channel weight list\n");
len +=
sprintf(buf + len,
"channel_num default_weight current_weight device Tx/Rx\n");
len +=
sprintf(buf + len,
" 0 %08x %08x Switch Rx0\n",
g_log_chan[0].default_weight, g_log_chan[0].weight);
len +=
sprintf(buf + len,
" 1 %08x %08x Switch Rx1\n",
g_log_chan[1].default_weight, g_log_chan[1].weight);
len +=
sprintf(buf + len,
" 2 %08x %08x Switch Rx2\n",
g_log_chan[2].default_weight, g_log_chan[2].weight);
len +=
sprintf(buf + len,
" 3 %08x %08x Switch Rx3\n",
g_log_chan[3].default_weight, g_log_chan[3].weight);
len +=
sprintf(buf + len,
" 4 %08x %08x Switch Tx0\n",
g_log_chan[4].default_weight, g_log_chan[4].weight);
len +=
sprintf(buf + len,
" 5 %08x %08x Switch Tx1\n",
g_log_chan[5].default_weight, g_log_chan[5].weight);
/*
len+=sprintf(buf+len," 6 %08x %08x TPE
Rx0\n",g_log_chan[6].default_weight, g_log_chan[6].weight);
len+=sprintf(buf+len," 7 %08x %08x TPE
Rx0\n",g_log_chan[7].default_weight, g_log_chan[7].weight);
len+=sprintf(buf+len," 8 %08x %08x TPE
Tx0\n",g_log_chan[8].default_weight, g_log_chan[8].weight);
len+=sprintf(buf+len," 9 %08x %08x TPE
Rx0\n",g_log_chan[9].default_weight, g_log_chan[9].weight);
len+=sprintf(buf+len," 10 %08x %08x DPLUS
Rx0\n",g_log_chan[10].default_weight, g_log_chan[10].weight);
len+=sprintf(buf+len," 11 %08x %08x DPLUS
Rx0\n",g_log_chan[11].default_weight, g_log_chan[11].weight); */
return len;
}
int dma_register_proc_read(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
dev_list *temp_dev;
int len = 0;;
len += sprintf(buf + len, "amazon dma driver\n");
len += sprintf(buf + len, "version 1.0\n");
len += sprintf(buf + len, "devices registered:\n");
for (temp_dev = g_head_dev; temp_dev; temp_dev = temp_dev->next) {
len += sprintf(buf + len, "%s ", temp_dev->dev->device_name);
}
len += sprintf(buf + len, "\n");
len += sprintf(buf + len, "CH_ON=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH_ON));
len += sprintf(buf + len, "CH_RST=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH_RST));
len += sprintf(buf + len, "CH0_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH0_ISR));
len += sprintf(buf + len, "CH1_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH1_ISR));
len += sprintf(buf + len, "CH2_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH2_ISR));
len += sprintf(buf + len, "CH3_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH3_ISR));
len += sprintf(buf + len, "CH4_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH4_ISR));
len += sprintf(buf + len, "CH5_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH5_ISR));
len += sprintf(buf + len, "CH6_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH6_ISR));
len += sprintf(buf + len, "CH7_ISR=%08x\n", AMAZON_DMA_REG32(AMAZON_DMA_CH7_ISR));
len += sprintf(buf + len, "CH8_ISR=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH8_ISR));
len +=
sprintf(buf + len, "CH9_ISR=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH9_ISR));
len +=
sprintf(buf + len, "CH10_ISR=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH10_ISR));
len +=
sprintf(buf + len, "CH11_ISR=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH11_ISR));
len +=
sprintf(buf + len, "LCH0_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK));
len +=
sprintf(buf + len, "LCH1_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH1_MSK));
len +=
sprintf(buf + len, "LCH2_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH2_MSK));
len +=
sprintf(buf + len, "LCH3_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH3_MSK));
len +=
sprintf(buf + len, "LCH4_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH4_MSK));
len +=
sprintf(buf + len, "LCH5_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH5_MSK));
len +=
sprintf(buf + len, "LCH6_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH6_MSK));
len +=
sprintf(buf + len, "LCH7_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH7_MSK));
len +=
sprintf(buf + len, "LCH8_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH8_MSK));
len +=
sprintf(buf + len, "LCH9_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH9_MSK));
len +=
sprintf(buf + len, "LCH10_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH10_MSK));
len +=
sprintf(buf + len, "LCH11_MSK=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH11_MSK));
len +=
sprintf(buf + len, "Desc_BA=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_Desc_BA));
len +=
sprintf(buf + len, "LCH0_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH0_DES_LEN));
len +=
sprintf(buf + len, "LCH1_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH1_DES_LEN));
len +=
sprintf(buf + len, "LCH2_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH2_DES_LEN));
len +=
sprintf(buf + len, "LCH3_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH3_DES_LEN));
len +=
sprintf(buf + len, "LCH4_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH4_DES_LEN));
len +=
sprintf(buf + len, "LCH5_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH5_DES_LEN));
len +=
sprintf(buf + len, "LCH6_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH6_DES_LEN));
len +=
sprintf(buf + len, "LCH7_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH7_DES_LEN));
len +=
sprintf(buf + len, "LCH8_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH8_DES_LEN));
len +=
sprintf(buf + len, "LCH9_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH9_DES_LEN));
len +=
sprintf(buf + len, "LCH10_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH10_DES_LEN));
len +=
sprintf(buf + len, "LCH11_DES_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH11_DES_LEN));
len +=
sprintf(buf + len, "LCH1_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH1_DES_OFST));
len +=
sprintf(buf + len, "LCH2_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH2_DES_OFST));
len +=
sprintf(buf + len, "LCH3_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH3_DES_OFST));
len +=
sprintf(buf + len, "LCH4_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH4_DES_OFST));
len +=
sprintf(buf + len, "LCH5_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH5_DES_OFST));
len +=
sprintf(buf + len, "LCH6_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH6_DES_OFST));
len +=
sprintf(buf + len, "LCH7_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH7_DES_OFST));
len +=
sprintf(buf + len, "LCH8_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH8_DES_OFST));
len +=
sprintf(buf + len, "LCH9_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH9_DES_OFST));
len +=
sprintf(buf + len, "LCH10_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH10_DES_OFST));
len +=
sprintf(buf + len, "LCH11_DES_OFST=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH11_DES_OFST));
len +=
sprintf(buf + len, "AMAZON_DMA_SW_BL=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_SW_BL));
len +=
sprintf(buf + len, "AMAZON_DMA_TPE_BL=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_TPE_BL));
len +=
sprintf(buf + len, "DPlus2FPI_BL=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_DPlus2FPI_BL));
len +=
sprintf(buf + len, "GRX_BUF_LEN=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_GRX_BUF_LEN));
len +=
sprintf(buf + len, "DMA_ECON_REG=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_DMA_ECON_REG));
len +=
sprintf(buf + len, "POLLING_REG=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_POLLING_REG));
len +=
sprintf(buf + len, "CH_WGT=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_CH_WGT));
len +=
sprintf(buf + len, "TX_WGT=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_TX_WGT));
len +=
sprintf(buf + len, "DPlus2FPI_CLASS=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_DPLus2FPI_CLASS));
len +=
sprintf(buf + len, "COMB_ISR=%08x\n",
AMAZON_DMA_REG32(AMAZON_DMA_COMB_ISR));
#ifdef AMAZON_DMA_TPE_AAL5_RECOVERY
len += sprintf(buf + len, "TPE fails:%u\n", total_dma_tpe_reset); // 000004:fchang
#endif
return len;
}
/* Brief: initialize DMA registers
* Description:
*/
static void dma_chip_init(void)
{
int i;
for (i = 0; i < CHAN_TOTAL_NUM; i++) {
AMAZON_DMA_REG32(AMAZON_DMA_CH1_DES_OFST +
i * AMAZON_DMA_CH_STEP) = DEFAULT_OFFSET;
}
#ifdef DMA_NO_POLLING
AMAZON_DMA_REG32(AMAZON_DMA_POLLING_REG) = 0;
#else
// enable poll mode and set polling counter
AMAZON_DMA_REG32(AMAZON_DMA_POLLING_REG) = DMA_POLLING_CNT | DMA_POLLING_ENABLE;
#endif
// to enable DMA drop
AMAZON_DMA_REG32(AMAZON_DMA_GRX_BUF_LEN) = 0x10000;
}
int insert_dev_list(dev_list * dev)
{
dev_list *temp_dev;
if (g_head_dev == NULL) {
g_head_dev = dev;
g_tail_dev = dev;
dev->prev = NULL;
dev->next = NULL;
} else {
for (temp_dev = g_head_dev; temp_dev; temp_dev = temp_dev->next) {
if (temp_dev->weight < dev->weight) {
if (temp_dev->prev)
temp_dev->prev->next = dev;
dev->prev = temp_dev->prev;
dev->next = temp_dev;
temp_dev->prev = dev;
if (temp_dev == g_head_dev)
g_head_dev = dev;
break;
}
}
if (!temp_dev) {
g_tail_dev->next = dev;
dev->prev = g_tail_dev;
dev->next = NULL;
g_tail_dev = dev;
}
}
return 1;
}
u8 *common_buffer_alloc(int len, int *byte_offset, void **opt)
{
u8 *buffer = (u8 *) kmalloc(len * sizeof(u8), GFP_KERNEL);
*byte_offset = 0;
return buffer;
}
int common_buffer_free(u8 * dataptr, void *opt)
{
if (dataptr)
kfree(dataptr);
return 0;
}
int register_dev(struct dma_device_info *dma_dev)
{
int i, j, temp;
int burst_reg = 0;
u8 *buffer;
void *p = NULL;
int byte_offset = 0;
struct rx_desc *rx_desc_p;
struct tx_desc *tx_desc_p;
if (strcmp(dma_dev->device_name, "switch1") == 0) {
AMAZON_DMA_REG32(AMAZON_DMA_CH_RST) = SWITCH1_RST_MASK; // resest
// channel
// 1st
AMAZON_DMA_REG32(AMAZON_DMA_DMA_ECON_REG) |= 0x3; // endian
// conversion
// for Switch
burst_reg = AMAZON_DMA_SW_BL;
dma_dev->logic_rx_chan_base = switch_rx_chan_base;
dma_dev->logic_tx_chan_base = switch_tx_chan_base;
}
else if (strcmp(dma_dev->device_name, "switch2") == 0) {
AMAZON_DMA_REG32(AMAZON_DMA_CH_RST) = SWITCH2_RST_MASK; // resest
// channel
// 1st
AMAZON_DMA_REG32(AMAZON_DMA_DMA_ECON_REG) |= 0x3; // endian
// conversion
// for Switch
burst_reg = AMAZON_DMA_SW_BL;
dma_dev->logic_rx_chan_base = switch2_rx_chan_base;
dma_dev->logic_tx_chan_base = switch2_tx_chan_base;
} else if (strcmp(dma_dev->device_name, "TPE") == 0) {
AMAZON_DMA_REG32(AMAZON_DMA_CH_RST) = TPE_RST_MASK; // resest
// channel 1st
//
burst_reg = AMAZON_DMA_TPE_BL;
dma_dev->logic_rx_chan_base = TPE_rx_chan_base;
dma_dev->logic_tx_chan_base = TPE_tx_chan_base;
}
else if (strcmp(dma_dev->device_name, "DPlus") == 0) {
AMAZON_DMA_REG32(AMAZON_DMA_CH_RST) = DPlus2FPI_RST_MASK; // resest
// channel
// 1st
dma_dev->logic_rx_chan_base = DPLus2FPI_rx_chan_base;
dma_dev->logic_tx_chan_base = DPLus2FPI_tx_chan_base;
}
i = 0;
for (temp = dma_dev->tx_burst_len; temp > 2; temp /= 2) {
i += 1;
}
AMAZON_DMA_REG32(burst_reg) = i << 1;
i = 0;
for (temp = dma_dev->rx_burst_len; temp > 2; temp /= 2) {
i += 1;
}
AMAZON_DMA_REG32(burst_reg) += i;
for (i = 0; i < dma_dev->num_rx_chan; i++) {
temp = dma_dev->logic_rx_chan_base + i;
g_log_chan[temp].dma_dev = dma_dev;
g_log_chan[temp].weight = dma_dev->rx_chan[i].weight;
g_log_chan[temp].default_weight = dma_dev->rx_chan[i].weight;
g_log_chan[temp].current_desc = 0;
g_log_chan[temp].desc_ofst = DEFAULT_OFFSET;
g_log_chan[temp].desc_len = dma_dev->rx_chan[i].desc_num;
g_log_chan[temp].offset_from_base = temp * DEFAULT_OFFSET;
g_log_chan[temp].packet_size = dma_dev->rx_chan[i].packet_size;
AMAZON_DMA_REG32(AMAZON_DMA_CH0_DES_LEN + temp * AMAZON_DMA_CH_STEP) = dma_dev->rx_chan[i].desc_num;
// enable interrupt mask
if (temp == 4 || temp == 5) {
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK + temp * AMAZON_DMA_CH_STEP) = 0x32;
} else {
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK + temp * AMAZON_DMA_CH_STEP) = 0x36;
}
strcpy(g_log_chan[temp].device_name, dma_dev->device_name);
g_log_chan[temp].burst_len = dma_dev->rx_burst_len;
g_log_chan[temp].control = dma_dev->rx_chan[i].control;
/* specify the buffer allocation and free method */
if (dma_dev->buffer_alloc)
g_log_chan[temp].buffer_alloc = dma_dev->buffer_alloc;
else
g_log_chan[temp].buffer_alloc = common_buffer_alloc;
if (dma_dev->buffer_free)
g_log_chan[temp].buffer_free = dma_dev->buffer_free;
else
g_log_chan[temp].buffer_free = common_buffer_free;
if (dma_dev->intr_handler)
g_log_chan[temp].intr_handler = dma_dev->intr_handler;
else
g_log_chan[temp].intr_handler = NULL;
for (j = 0; j < g_log_chan[temp].desc_len; j++) {
rx_desc_p = (struct rx_desc *) (g_desc_list + g_log_chan[temp].offset_from_base + j);
rx_desc_p->status.word = 0;
rx_desc_p->status.field.data_length = g_log_chan[temp].packet_size;
buffer = (u8 *) g_log_chan[temp].buffer_alloc(g_log_chan[temp].packet_size, &byte_offset, &p);
rx_desc_p->Data_Pointer = (u32) CPHYSADDR((u32) buffer);
rx_desc_p->status.field.byte_offset = byte_offset;
/* fix me, should check if the addresss comply with the burst
lenght requirment */
g_log_chan[temp].opt[j] = p;
rx_desc_p->status.field.OWN = DMA_OWN;
}
/* open or close the channel */
if (g_log_chan[temp].control)
open_channel(temp);
else
close_channel(temp);
}
for (i = 0; i < dma_dev->num_tx_chan; i++) {
temp = dma_dev->logic_tx_chan_base + i;
g_log_chan[temp].dma_dev = dma_dev;
g_log_chan[temp].weight = dma_dev->tx_chan[i].weight;
g_log_chan[temp].default_weight = dma_dev->tx_chan[i].weight;
g_log_chan[temp].current_desc = 0;
g_log_chan[temp].desc_ofst = DEFAULT_OFFSET;
g_log_chan[temp].desc_len = dma_dev->tx_chan[i].desc_num;
g_log_chan[temp].offset_from_base = temp * DEFAULT_OFFSET;
g_log_chan[temp].packet_size = dma_dev->tx_chan[i].packet_size;
AMAZON_DMA_REG32(AMAZON_DMA_CH0_DES_LEN + temp * AMAZON_DMA_CH_STEP) = dma_dev->tx_chan[i].desc_num;
// enable interrupt mask
#ifdef NO_TX_INT
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK + temp * AMAZON_DMA_CH_STEP) = 0x3e;
#else
AMAZON_DMA_REG32(AMAZON_DMA_CH0_MSK + temp * AMAZON_DMA_CH_STEP) = 0x36;
#endif
strcpy(g_log_chan[temp].device_name, dma_dev->device_name);
g_log_chan[temp].burst_len = dma_dev->tx_burst_len;
g_log_chan[temp].control = dma_dev->tx_chan[i].control;
if (dma_dev->buffer_alloc)
g_log_chan[temp].buffer_alloc = dma_dev->buffer_alloc;
else
g_log_chan[temp].buffer_alloc = common_buffer_alloc;
if (dma_dev->buffer_free)
g_log_chan[temp].buffer_free = dma_dev->buffer_free;
else
g_log_chan[temp].buffer_free = common_buffer_free;
if (dma_dev->intr_handler)
g_log_chan[temp].intr_handler = dma_dev->intr_handler;
else
g_log_chan[temp].intr_handler = NULL;
for (j = 0; j < g_log_chan[temp].desc_len; j++) {
tx_desc_p =
(struct tx_desc *) (g_desc_list +
g_log_chan[temp].offset_from_base + j);
tx_desc_p->status.word = 0;
tx_desc_p->status.field.data_length =
g_log_chan[temp].packet_size;
tx_desc_p->status.field.OWN = CPU_OWN;
}
/* workaround DMA pitfall, we never turn on channel if we don't
have proper descriptors */
if (!g_log_chan[temp].control) {
close_channel(temp);
}
}
return 0;
}
int dma_device_register(struct dma_device_info *dma_dev)
{
dev_list *temp_dev;
temp_dev = (dev_list *) kmalloc(sizeof(dev_list), GFP_KERNEL);
temp_dev->dev = dma_dev;
temp_dev->weight = dma_dev->weight;
insert_dev_list(temp_dev);
/* check whether this is a known device */
if ((strcmp(dma_dev->device_name, "switch1") == 0)
|| (strcmp(dma_dev->device_name, "TPE") == 0)
|| (strcmp(dma_dev->device_name, "switch2") == 0)
|| (strcmp(dma_dev->device_name, "DPlus") == 0)) {
register_dev(dma_dev);
}
return 0;
}
int unregister_dev(struct dma_device_info *dma_dev)
{
int i, j, temp;
u8 *buffer;
struct rx_desc *rx_desc_p;
for (i = 0; i < dma_dev->num_rx_chan; i++) {
temp = dma_dev->logic_rx_chan_base + i;
close_channel(temp);
for (j = 0; j < g_log_chan[temp].desc_len; j++) {
rx_desc_p =
(struct rx_desc *) (g_desc_list +
g_log_chan[temp].offset_from_base + j);
buffer = (u8 *) __va(rx_desc_p->Data_Pointer);
g_log_chan[temp].buffer_free(buffer, g_log_chan[temp].opt[j]);
}
}
for (i = 0; i < dma_dev->num_tx_chan; i++) {
temp = dma_dev->logic_tx_chan_base + i;
close_channel(temp);
}
return 0;
}
int dma_device_unregister(struct dma_device_info *dev)
{
dev_list *temp_dev;
for (temp_dev = g_head_dev; temp_dev; temp_dev = temp_dev->next) {
if (strcmp(dev->device_name, temp_dev->dev->device_name) == 0) {
if ((strcmp(dev->device_name, "switch1") == 0)
|| (strcmp(dev->device_name, "TPE") == 0)
|| (strcmp(dev->device_name, "switch2") == 0)
|| (strcmp(dev->device_name, "DPlus") == 0))
unregister_dev(dev);
if (temp_dev == g_head_dev) {
g_head_dev = temp_dev->next;
kfree(temp_dev);
} else {
if (temp_dev == g_tail_dev)
g_tail_dev = temp_dev->prev;
if (temp_dev->prev)
temp_dev->prev->next = temp_dev->next;
if (temp_dev->next)
temp_dev->next->prev = temp_dev->prev;
kfree(temp_dev);
}
break;
}
}
return 0;
}
void dma_device_update_rx(struct dma_device_info *dma_dev)
{
int i, temp;
for (i = 0; i < dma_dev->num_rx_chan; i++) {
temp = dma_dev->logic_rx_chan_base + i;
g_log_chan[temp].control = dma_dev->rx_chan[i].control;
if (g_log_chan[temp].control)
open_channel(temp);
else
close_channel(temp);
}
}
void dma_device_update_tx(struct dma_device_info *dma_dev)
{
int i, temp;
for (i = 0; i < dma_dev->num_tx_chan; i++) {
temp = dma_dev->logic_tx_chan_base + i;
g_log_chan[temp].control = dma_dev->tx_chan[i].control;
if (g_log_chan[temp].control) {
/* we turn on channel when send out the very first packet */
// open_channel(temp);
} else
close_channel(temp);
}
}
int dma_device_update(struct dma_device_info *dma_dev)
{
dma_device_update_rx(dma_dev);
dma_device_update_tx(dma_dev);
return 0;
}
static int dma_open(struct inode *inode, struct file *file)
{
return 0;
}
static int dma_release(struct inode *inode, struct file *file)
{
/* release the resources */
return 0;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
static long dma_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
#else
static int dma_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
#endif
{
int value = 0;
int chan_no = 0;
switch (cmd) {
case 0: /* get register value */
break;
case 1: /* return channel weight */
chan_no = *((int *) arg);
*((int *) arg + 1) = g_log_chan[chan_no].default_weight;
break;
case 2: /* set channel weight */
chan_no = *((int *) arg);
value = *((int *) arg + 1);
printk("new weight=%08x\n", value);
g_log_chan[chan_no].default_weight = value;
break;
default:
break;
}
return 0;
}
static struct file_operations dma_fops = {
owner:THIS_MODULE,
open:dma_open,
release:dma_release,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
unlocked_ioctl:dma_ioctl,
#else
ioctl:dma_ioctl,
#endif
};
static int dma_init(void)
{
int result = 0;
int i;
printk("initialising dma core\n");
result = register_chrdev(DMA_MAJOR, "dma-core", &dma_fops);
if (result) {
AMAZON_DMA_EMSG("cannot register device dma-core!\n");
return result;
}
result = request_irq(AMAZON_DMA_INT, dma_interrupt, IRQF_DISABLED, "dma-core", (void *) &dma_interrupt);
if (result) {
AMAZON_DMA_EMSG("error, cannot get dma_irq!\n");
free_irq(AMAZON_DMA_INT, (void *) &dma_interrupt);
return -EFAULT;
}
g_desc_list = (u64 *) KSEG1ADDR(__get_free_page(GFP_DMA));
if (g_desc_list == NULL) {
AMAZON_DMA_EMSG("no memory for desriptor\n");
return -ENOMEM;
}
memset(g_desc_list, 0, PAGE_SIZE);
AMAZON_DMA_REG32(AMAZON_DMA_Desc_BA) = (u32) CPHYSADDR((u32) g_desc_list);
g_amazon_dma_dir = proc_mkdir("amazon_dma", NULL);
create_proc_read_entry("dma_register", 0, g_amazon_dma_dir, dma_register_proc_read, NULL);
create_proc_read_entry("g_desc_list", 0, g_amazon_dma_dir, desc_list_proc_read, NULL);
create_proc_read_entry("channel_weight", 0, g_amazon_dma_dir, channel_weight_proc_read, NULL);
dma_chip_init();
for (i = 0; i < (RX_CHAN_NUM + 1); i++) {
rx_chan_list[i] = -1;
}
for (i = 0; i < (TX_CHAN_NUM + 1); i++) {
tx_chan_list[i] = -1;
}
for (i = 0; i < CHAN_TOTAL_NUM; i++) {
comb_isr_mask[i] = 0x80000000 >> (i);
}
g_log_chan[CHAN_TOTAL_NUM].weight = 0;
printk("initialising dma core ... done\n");
return 0;
}
arch_initcall(dma_init);
void dma_cleanup(void)
{
dev_list *temp_dev;
unregister_chrdev(DMA_MAJOR, "dma-core");
for (temp_dev = g_head_dev; temp_dev; temp_dev = temp_dev->next) {
kfree(temp_dev);
}
free_page(KSEG0ADDR((unsigned long) g_desc_list));
remove_proc_entry("channel_weight", g_amazon_dma_dir);
remove_proc_entry("dma_list", g_amazon_dma_dir);
remove_proc_entry("dma_register", g_amazon_dma_dir);
remove_proc_entry("amazon_dma", NULL);
/* release the resources */
free_irq(AMAZON_DMA_INT, (void *) &dma_interrupt);
}
EXPORT_SYMBOL(dma_device_register);
EXPORT_SYMBOL(dma_device_unregister);
EXPORT_SYMBOL(dma_device_read);
EXPORT_SYMBOL(dma_device_write);
EXPORT_SYMBOL(dma_device_update);
EXPORT_SYMBOL(dma_device_update_rx);
MODULE_LICENSE("GPL");