You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openwrt/target/linux/ramips/files/drivers/net/ethernet/ralink/mtk_eth_soc.c

1729 lines
41 KiB
C

/* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Copyright (C) 2009-2015 John Crispin <blogic@openwrt.org>
* Copyright (C) 2009-2015 Felix Fietkau <nbd@nbd.name>
* Copyright (C) 2013-2015 Michael Lee <igvtee@gmail.com>
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/if_vlan.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/netfilter.h>
#include <net/netfilter/nf_flow_table.h>
#include <linux/of_gpio.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <asm/mach-ralink/ralink_regs.h>
#include "mtk_eth_soc.h"
#include "mdio.h"
#include "ethtool.h"
#define MAX_RX_LENGTH 1536
#define FE_RX_ETH_HLEN (VLAN_ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN)
#define FE_RX_HLEN (NET_SKB_PAD + FE_RX_ETH_HLEN + NET_IP_ALIGN)
#define DMA_DUMMY_DESC 0xffffffff
#define FE_DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_DMA_DESP2_DEF (TX_DMA_LS0 | TX_DMA_DONE)
#define TX_DMA_DESP4_DEF (TX_DMA_QN(3) | TX_DMA_PN(1))
#define NEXT_TX_DESP_IDX(X) (((X) + 1) & (ring->tx_ring_size - 1))
#define NEXT_RX_DESP_IDX(X) (((X) + 1) & (ring->rx_ring_size - 1))
#define SYSC_REG_RSTCTRL 0x34
static int fe_msg_level = -1;
module_param_named(msg_level, fe_msg_level, int, 0);
MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)");
static const u16 fe_reg_table_default[FE_REG_COUNT] = {
[FE_REG_PDMA_GLO_CFG] = FE_PDMA_GLO_CFG,
[FE_REG_PDMA_RST_CFG] = FE_PDMA_RST_CFG,
[FE_REG_DLY_INT_CFG] = FE_DLY_INT_CFG,
[FE_REG_TX_BASE_PTR0] = FE_TX_BASE_PTR0,
[FE_REG_TX_MAX_CNT0] = FE_TX_MAX_CNT0,
[FE_REG_TX_CTX_IDX0] = FE_TX_CTX_IDX0,
[FE_REG_TX_DTX_IDX0] = FE_TX_DTX_IDX0,
[FE_REG_RX_BASE_PTR0] = FE_RX_BASE_PTR0,
[FE_REG_RX_MAX_CNT0] = FE_RX_MAX_CNT0,
[FE_REG_RX_CALC_IDX0] = FE_RX_CALC_IDX0,
[FE_REG_RX_DRX_IDX0] = FE_RX_DRX_IDX0,
[FE_REG_FE_INT_ENABLE] = FE_FE_INT_ENABLE,
[FE_REG_FE_INT_STATUS] = FE_FE_INT_STATUS,
[FE_REG_FE_DMA_VID_BASE] = FE_DMA_VID0,
[FE_REG_FE_COUNTER_BASE] = FE_GDMA1_TX_GBCNT,
[FE_REG_FE_RST_GL] = FE_FE_RST_GL,
};
static const u16 *fe_reg_table = fe_reg_table_default;
struct fe_work_t {
int bitnr;
void (*action)(struct fe_priv *);
};
static void __iomem *fe_base;
void fe_w32(u32 val, unsigned reg)
{
__raw_writel(val, fe_base + reg);
}
u32 fe_r32(unsigned reg)
{
return __raw_readl(fe_base + reg);
}
void fe_reg_w32(u32 val, enum fe_reg reg)
{
fe_w32(val, fe_reg_table[reg]);
}
u32 fe_reg_r32(enum fe_reg reg)
{
return fe_r32(fe_reg_table[reg]);
}
void fe_m32(struct fe_priv *eth, u32 clear, u32 set, unsigned reg)
{
u32 val;
spin_lock(&eth->page_lock);
val = __raw_readl(fe_base + reg);
val &= ~clear;
val |= set;
__raw_writel(val, fe_base + reg);
spin_unlock(&eth->page_lock);
}
void fe_reset(u32 reset_bits)
{
u32 t;
t = rt_sysc_r32(SYSC_REG_RSTCTRL);
t |= reset_bits;
rt_sysc_w32(t, SYSC_REG_RSTCTRL);
usleep_range(10, 20);
t &= ~reset_bits;
rt_sysc_w32(t, SYSC_REG_RSTCTRL);
usleep_range(10, 20);
}
static inline void fe_int_disable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) & ~mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_int_enable(u32 mask)
{
fe_reg_w32(fe_reg_r32(FE_REG_FE_INT_ENABLE) | mask,
FE_REG_FE_INT_ENABLE);
/* flush write */
fe_reg_r32(FE_REG_FE_INT_ENABLE);
}
static inline void fe_hw_set_macaddr(struct fe_priv *priv, unsigned char *mac)
{
unsigned long flags;
spin_lock_irqsave(&priv->page_lock, flags);
fe_w32((mac[0] << 8) | mac[1], FE_GDMA1_MAC_ADRH);
fe_w32((mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5],
FE_GDMA1_MAC_ADRL);
spin_unlock_irqrestore(&priv->page_lock, flags);
}
static int fe_set_mac_address(struct net_device *dev, void *p)
{
int ret = eth_mac_addr(dev, p);
if (!ret) {
struct fe_priv *priv = netdev_priv(dev);
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, p);
}
return ret;
}
static inline int fe_max_frag_size(int mtu)
{
/* make sure buf_size will be at least MAX_RX_LENGTH */
if (mtu + FE_RX_ETH_HLEN < MAX_RX_LENGTH)
mtu = MAX_RX_LENGTH - FE_RX_ETH_HLEN;
return SKB_DATA_ALIGN(FE_RX_HLEN + mtu) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static inline int fe_max_buf_size(int frag_size)
{
int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN -
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
BUG_ON(buf_size < MAX_RX_LENGTH);
return buf_size;
}
static inline void fe_get_rxd(struct fe_rx_dma *rxd, struct fe_rx_dma *dma_rxd)
{
rxd->rxd1 = dma_rxd->rxd1;
rxd->rxd2 = dma_rxd->rxd2;
rxd->rxd3 = dma_rxd->rxd3;
rxd->rxd4 = dma_rxd->rxd4;
}
static inline void fe_set_txd(struct fe_tx_dma *txd, struct fe_tx_dma *dma_txd)
{
dma_txd->txd1 = txd->txd1;
dma_txd->txd3 = txd->txd3;
dma_txd->txd4 = txd->txd4;
/* clean dma done flag last */
dma_txd->txd2 = txd->txd2;
}
static void fe_clean_rx(struct fe_priv *priv)
{
struct fe_rx_ring *ring = &priv->rx_ring;
struct page *page;
int i;
if (ring->rx_data) {
for (i = 0; i < ring->rx_ring_size; i++)
if (ring->rx_data[i]) {
if (ring->rx_dma && ring->rx_dma[i].rxd1)
dma_unmap_single(&priv->netdev->dev,
ring->rx_dma[i].rxd1,
ring->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(ring->rx_data[i]);
}
kfree(ring->rx_data);
ring->rx_data = NULL;
}
if (ring->rx_dma) {
dma_free_coherent(&priv->netdev->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
ring->rx_dma,
ring->rx_phys);
ring->rx_dma = NULL;
}
if (!ring->frag_cache.va)
return;
page = virt_to_page(ring->frag_cache.va);
__page_frag_cache_drain(page, ring->frag_cache.pagecnt_bias);
memset(&ring->frag_cache, 0, sizeof(ring->frag_cache));
}
static int fe_alloc_rx(struct fe_priv *priv)
{
struct net_device *netdev = priv->netdev;
struct fe_rx_ring *ring = &priv->rx_ring;
int i, pad;
ring->rx_data = kcalloc(ring->rx_ring_size, sizeof(*ring->rx_data),
GFP_KERNEL);
if (!ring->rx_data)
goto no_rx_mem;
for (i = 0; i < ring->rx_ring_size; i++) {
ring->rx_data[i] = page_frag_alloc(&ring->frag_cache,
ring->frag_size,
GFP_KERNEL);
if (!ring->rx_data[i])
goto no_rx_mem;
}
ring->rx_dma = dma_alloc_coherent(&netdev->dev,
ring->rx_ring_size * sizeof(*ring->rx_dma),
&ring->rx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->rx_dma)
goto no_rx_mem;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
pad = 0;
else
pad = NET_IP_ALIGN;
for (i = 0; i < ring->rx_ring_size; i++) {
dma_addr_t dma_addr = dma_map_single(&netdev->dev,
ring->rx_data[i] + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr)))
goto no_rx_mem;
ring->rx_dma[i].rxd1 = (unsigned int)dma_addr;
if (priv->flags & FE_FLAG_RX_SG_DMA)
ring->rx_dma[i].rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
ring->rx_dma[i].rxd2 = RX_DMA_LSO;
}
ring->rx_calc_idx = ring->rx_ring_size - 1;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
fe_reg_w32(ring->rx_phys, FE_REG_RX_BASE_PTR0);
fe_reg_w32(ring->rx_ring_size, FE_REG_RX_MAX_CNT0);
fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
fe_reg_w32(FE_PST_DRX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_rx_mem:
return -ENOMEM;
}
static void fe_txd_unmap(struct device *dev, struct fe_tx_buf *tx_buf)
{
if (dma_unmap_len(tx_buf, dma_len0))
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr0),
dma_unmap_len(tx_buf, dma_len0),
DMA_TO_DEVICE);
if (dma_unmap_len(tx_buf, dma_len1))
dma_unmap_page(dev,
dma_unmap_addr(tx_buf, dma_addr1),
dma_unmap_len(tx_buf, dma_len1),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, dma_addr0, 0);
dma_unmap_len_set(tx_buf, dma_addr1, 0);
if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)DMA_DUMMY_DESC))
dev_kfree_skb_any(tx_buf->skb);
tx_buf->skb = NULL;
}
static void fe_clean_tx(struct fe_priv *priv)
{
int i;
struct device *dev = &priv->netdev->dev;
struct fe_tx_ring *ring = &priv->tx_ring;
if (ring->tx_buf) {
for (i = 0; i < ring->tx_ring_size; i++)
fe_txd_unmap(dev, &ring->tx_buf[i]);
kfree(ring->tx_buf);
ring->tx_buf = NULL;
}
if (ring->tx_dma) {
dma_free_coherent(dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
ring->tx_dma,
ring->tx_phys);
ring->tx_dma = NULL;
}
netdev_reset_queue(priv->netdev);
}
static int fe_alloc_tx(struct fe_priv *priv)
{
int i;
struct fe_tx_ring *ring = &priv->tx_ring;
ring->tx_free_idx = 0;
ring->tx_next_idx = 0;
ring->tx_thresh = max((unsigned long)ring->tx_ring_size >> 2,
MAX_SKB_FRAGS);
ring->tx_buf = kcalloc(ring->tx_ring_size, sizeof(*ring->tx_buf),
GFP_KERNEL);
if (!ring->tx_buf)
goto no_tx_mem;
ring->tx_dma = dma_alloc_coherent(&priv->netdev->dev,
ring->tx_ring_size * sizeof(*ring->tx_dma),
&ring->tx_phys,
GFP_ATOMIC | __GFP_ZERO);
if (!ring->tx_dma)
goto no_tx_mem;
for (i = 0; i < ring->tx_ring_size; i++) {
if (priv->soc->tx_dma)
priv->soc->tx_dma(&ring->tx_dma[i]);
ring->tx_dma[i].txd2 = TX_DMA_DESP2_DEF;
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
fe_reg_w32(ring->tx_phys, FE_REG_TX_BASE_PTR0);
fe_reg_w32(ring->tx_ring_size, FE_REG_TX_MAX_CNT0);
fe_reg_w32(0, FE_REG_TX_CTX_IDX0);
fe_reg_w32(FE_PST_DTX_IDX0, FE_REG_PDMA_RST_CFG);
return 0;
no_tx_mem:
return -ENOMEM;
}
static int fe_init_dma(struct fe_priv *priv)
{
int err;
err = fe_alloc_tx(priv);
if (err)
return err;
err = fe_alloc_rx(priv);
if (err)
return err;
return 0;
}
static void fe_free_dma(struct fe_priv *priv)
{
fe_clean_tx(priv);
fe_clean_rx(priv);
}
void fe_stats_update(struct fe_priv *priv)
{
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
u64 stats;
u64_stats_update_begin(&hwstats->syncp);
if (IS_ENABLED(CONFIG_SOC_MT7621)) {
hwstats->rx_bytes += fe_r32(base);
stats = fe_r32(base + 0x04);
if (stats)
hwstats->rx_bytes += (stats << 32);
hwstats->rx_packets += fe_r32(base + 0x08);
hwstats->rx_overflow += fe_r32(base + 0x10);
hwstats->rx_fcs_errors += fe_r32(base + 0x14);
hwstats->rx_short_errors += fe_r32(base + 0x18);
hwstats->rx_long_errors += fe_r32(base + 0x1c);
hwstats->rx_checksum_errors += fe_r32(base + 0x20);
hwstats->rx_flow_control_packets += fe_r32(base + 0x24);
hwstats->tx_skip += fe_r32(base + 0x28);
hwstats->tx_collisions += fe_r32(base + 0x2c);
hwstats->tx_bytes += fe_r32(base + 0x30);
stats = fe_r32(base + 0x34);
if (stats)
hwstats->tx_bytes += (stats << 32);
hwstats->tx_packets += fe_r32(base + 0x38);
} else {
hwstats->tx_bytes += fe_r32(base);
hwstats->tx_packets += fe_r32(base + 0x04);
hwstats->tx_skip += fe_r32(base + 0x08);
hwstats->tx_collisions += fe_r32(base + 0x0c);
hwstats->rx_bytes += fe_r32(base + 0x20);
hwstats->rx_packets += fe_r32(base + 0x24);
hwstats->rx_overflow += fe_r32(base + 0x28);
hwstats->rx_fcs_errors += fe_r32(base + 0x2c);
hwstats->rx_short_errors += fe_r32(base + 0x30);
hwstats->rx_long_errors += fe_r32(base + 0x34);
hwstats->rx_checksum_errors += fe_r32(base + 0x38);
hwstats->rx_flow_control_packets += fe_r32(base + 0x3c);
}
u64_stats_update_end(&hwstats->syncp);
}
static void fe_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_hw_stats *hwstats = priv->hw_stats;
unsigned int base = fe_reg_table[FE_REG_FE_COUNTER_BASE];
unsigned int start;
if (!base) {
netdev_stats_to_stats64(storage, &dev->stats);
return;
}
if (netif_running(dev) && netif_device_present(dev)) {
if (spin_trylock_bh(&hwstats->stats_lock)) {
fe_stats_update(priv);
spin_unlock_bh(&hwstats->stats_lock);
}
}
do {
start = u64_stats_fetch_begin_irq(&hwstats->syncp);
storage->rx_packets = hwstats->rx_packets;
storage->tx_packets = hwstats->tx_packets;
storage->rx_bytes = hwstats->rx_bytes;
storage->tx_bytes = hwstats->tx_bytes;
storage->collisions = hwstats->tx_collisions;
storage->rx_length_errors = hwstats->rx_short_errors +
hwstats->rx_long_errors;
storage->rx_over_errors = hwstats->rx_overflow;
storage->rx_crc_errors = hwstats->rx_fcs_errors;
storage->rx_errors = hwstats->rx_checksum_errors;
storage->tx_aborted_errors = hwstats->tx_skip;
} while (u64_stats_fetch_retry_irq(&hwstats->syncp, start));
storage->tx_errors = priv->netdev->stats.tx_errors;
storage->rx_dropped = priv->netdev->stats.rx_dropped;
storage->tx_dropped = priv->netdev->stats.tx_dropped;
}
static int fe_vlan_rx_add_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
u32 vlan_cfg;
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
if (test_bit(idx, &priv->vlan_map)) {
netdev_warn(dev, "disable tx vlan offload\n");
dev->wanted_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
netdev_update_features(dev);
} else {
vlan_cfg = fe_r32(fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
if (idx & 0x1) {
vlan_cfg &= 0xffff;
vlan_cfg |= (vid << 16);
} else {
vlan_cfg &= 0xffff0000;
vlan_cfg |= vid;
}
fe_w32(vlan_cfg, fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
((idx >> 1) << 2));
set_bit(idx, &priv->vlan_map);
}
return 0;
}
static int fe_vlan_rx_kill_vid(struct net_device *dev,
__be16 proto, u16 vid)
{
struct fe_priv *priv = netdev_priv(dev);
u32 idx = (vid & 0xf);
if (!((fe_reg_table[FE_REG_FE_DMA_VID_BASE]) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_TX)))
return 0;
clear_bit(idx, &priv->vlan_map);
return 0;
}
static inline u32 fe_empty_txd(struct fe_tx_ring *ring)
{
barrier();
return (u32)(ring->tx_ring_size -
((ring->tx_next_idx - ring->tx_free_idx) &
(ring->tx_ring_size - 1)));
}
struct fe_map_state {
struct device *dev;
struct fe_tx_dma txd;
u32 def_txd4;
int ring_idx;
int i;
};
static void fe_tx_dma_write_desc(struct fe_tx_ring *ring, struct fe_map_state *st)
{
fe_set_txd(&st->txd, &ring->tx_dma[st->ring_idx]);
memset(&st->txd, 0, sizeof(st->txd));
st->txd.txd4 = st->def_txd4;
st->ring_idx = NEXT_TX_DESP_IDX(st->ring_idx);
}
static int __fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
struct page *page, size_t offset, size_t size)
{
struct device *dev = st->dev;
struct fe_tx_buf *tx_buf;
dma_addr_t mapped_addr;
mapped_addr = dma_map_page(dev, page, offset, size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, mapped_addr)))
return -EIO;
if (st->i && !(st->i & 1))
fe_tx_dma_write_desc(ring, st);
tx_buf = &ring->tx_buf[st->ring_idx];
if (st->i & 1) {
st->txd.txd3 = mapped_addr;
st->txd.txd2 |= TX_DMA_PLEN1(size);
dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len1, size);
} else {
tx_buf->skb = (struct sk_buff *)DMA_DUMMY_DESC;
st->txd.txd1 = mapped_addr;
st->txd.txd2 = TX_DMA_PLEN0(size);
dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr);
dma_unmap_len_set(tx_buf, dma_len0, size);
}
st->i++;
return 0;
}
static int fe_tx_dma_map_page(struct fe_tx_ring *ring, struct fe_map_state *st,
struct page *page, size_t offset, size_t size)
{
int cur_size;
int ret;
while (size > 0) {
cur_size = min_t(size_t, size, TX_DMA_BUF_LEN);
ret = __fe_tx_dma_map_page(ring, st, page, offset, cur_size);
if (ret)
return ret;
size -= cur_size;
offset += cur_size;
}
return 0;
}
static int fe_tx_dma_map_skb(struct fe_tx_ring *ring, struct fe_map_state *st,
struct sk_buff *skb)
{
struct page *page = virt_to_page(skb->data);
size_t offset = offset_in_page(skb->data);
size_t size = skb_headlen(skb);
return fe_tx_dma_map_page(ring, st, page, offset, size);
}
static inline struct sk_buff *
fe_next_frag(struct sk_buff *head, struct sk_buff *skb)
{
if (skb != head)
return skb->next;
if (skb_has_frag_list(skb))
return skb_shinfo(skb)->frag_list;
return NULL;
}
static int fe_tx_map_dma(struct sk_buff *skb, struct net_device *dev,
int tx_num, struct fe_tx_ring *ring)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_map_state st = {
.dev = &dev->dev,
.ring_idx = ring->tx_next_idx,
};
struct sk_buff *head = skb;
struct fe_tx_buf *tx_buf;
unsigned int nr_frags;
int i, j;
/* init tx descriptor */
if (priv->soc->tx_dma)
priv->soc->tx_dma(&st.txd);
else
st.txd.txd4 = TX_DMA_DESP4_DEF;
st.def_txd4 = st.txd.txd4;
/* TX Checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL)
st.txd.txd4 |= TX_DMA_CHKSUM;
/* VLAN header offload */
if (skb_vlan_tag_present(skb)) {
u16 tag = skb_vlan_tag_get(skb);
if (IS_ENABLED(CONFIG_SOC_MT7621))
st.txd.txd4 |= TX_DMA_INS_VLAN_MT7621 | tag;
else
st.txd.txd4 |= TX_DMA_INS_VLAN |
((tag >> VLAN_PRIO_SHIFT) << 4) |
(tag & 0xF);
}
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0)) {
netif_warn(priv, tx_err, dev,
"GSO expand head fail.\n");
goto err_out;
}
if (skb_shinfo(skb)->gso_type &
(SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
st.txd.txd4 |= TX_DMA_TSO;
tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size);
}
}
next_frag:
if (skb_headlen(skb) && fe_tx_dma_map_skb(ring, &st, skb))
goto err_dma;
/* TX SG offload */
nr_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[i];
if (fe_tx_dma_map_page(ring, &st, skb_frag_page(frag),
frag->page_offset, skb_frag_size(frag)))
goto err_dma;
}
skb = fe_next_frag(head, skb);
if (skb)
goto next_frag;
/* set last segment */
if (st.i & 0x1)
st.txd.txd2 |= TX_DMA_LS0;
else
st.txd.txd2 |= TX_DMA_LS1;
/* store skb to cleanup */
tx_buf = &ring->tx_buf[st.ring_idx];
tx_buf->skb = head;
netdev_sent_queue(dev, head->len);
skb_tx_timestamp(head);
fe_tx_dma_write_desc(ring, &st);
ring->tx_next_idx = st.ring_idx;
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
if (unlikely(fe_empty_txd(ring) <= ring->tx_thresh)) {
netif_stop_queue(dev);
smp_mb();
if (unlikely(fe_empty_txd(ring) > ring->tx_thresh))
netif_wake_queue(dev);
}
if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !head->xmit_more)
fe_reg_w32(ring->tx_next_idx, FE_REG_TX_CTX_IDX0);
return 0;
err_dma:
j = ring->tx_next_idx;
for (i = 0; i < tx_num; i++) {
/* unmap dma */
fe_txd_unmap(&dev->dev, &ring->tx_buf[j]);
ring->tx_dma[j].txd2 = TX_DMA_DESP2_DEF;
j = NEXT_TX_DESP_IDX(j);
}
/* make sure that all changes to the dma ring are flushed before we
* continue
*/
wmb();
err_out:
return -1;
}
static inline int fe_skb_padto(struct sk_buff *skb, struct fe_priv *priv)
{
unsigned int len;
int ret;
ret = 0;
if (unlikely(skb->len < VLAN_ETH_ZLEN)) {
if ((priv->flags & FE_FLAG_PADDING_64B) &&
!(priv->flags & FE_FLAG_PADDING_BUG))
return ret;
if (skb_vlan_tag_present(skb))
len = ETH_ZLEN;
else if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
len = VLAN_ETH_ZLEN;
else if (!(priv->flags & FE_FLAG_PADDING_64B))
len = ETH_ZLEN;
else
return ret;
if (skb->len < len) {
ret = skb_pad(skb, len - skb->len);
if (ret < 0)
return ret;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
}
return ret;
}
static inline int fe_cal_txd_req(struct sk_buff *skb)
{
struct sk_buff *head = skb;
int i, nfrags = 0;
struct skb_frag_struct *frag;
next_frag:
nfrags++;
if (skb_is_gso(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
frag = &skb_shinfo(skb)->frags[i];
nfrags += DIV_ROUND_UP(frag->size, TX_DMA_BUF_LEN);
}
} else {
nfrags += skb_shinfo(skb)->nr_frags;
}
skb = fe_next_frag(head, skb);
if (skb)
goto next_frag;
return DIV_ROUND_UP(nfrags, 2);
}
static int fe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_tx_ring *ring = &priv->tx_ring;
struct net_device_stats *stats = &dev->stats;
int tx_num;
int len = skb->len;
if (fe_skb_padto(skb, priv)) {
netif_warn(priv, tx_err, dev, "tx padding failed!\n");
return NETDEV_TX_OK;
}
tx_num = fe_cal_txd_req(skb);
if (unlikely(fe_empty_txd(ring) <= tx_num)) {
netif_stop_queue(dev);
netif_err(priv, tx_queued, dev,
"Tx Ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
if (fe_tx_map_dma(skb, dev, tx_num, ring) < 0) {
stats->tx_dropped++;
} else {
stats->tx_packets++;
stats->tx_bytes += len;
}
return NETDEV_TX_OK;
}
static int fe_poll_rx(struct napi_struct *napi, int budget,
struct fe_priv *priv, u32 rx_intr)
{
struct net_device *netdev = priv->netdev;
struct net_device_stats *stats = &netdev->stats;
struct fe_soc_data *soc = priv->soc;
struct fe_rx_ring *ring = &priv->rx_ring;
int idx = ring->rx_calc_idx;
u32 checksum_bit;
struct sk_buff *skb;
u8 *data, *new_data;
struct fe_rx_dma *rxd, trxd;
int done = 0, pad;
if (netdev->features & NETIF_F_RXCSUM)
checksum_bit = soc->checksum_bit;
else
checksum_bit = 0;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
pad = 0;
else
pad = NET_IP_ALIGN;
while (done < budget) {
unsigned int pktlen;
dma_addr_t dma_addr;
idx = NEXT_RX_DESP_IDX(idx);
rxd = &ring->rx_dma[idx];
data = ring->rx_data[idx];
fe_get_rxd(&trxd, rxd);
if (!(trxd.rxd2 & RX_DMA_DONE))
break;
/* alloc new buffer */
new_data = page_frag_alloc(&ring->frag_cache, ring->frag_size,
GFP_ATOMIC);
if (unlikely(!new_data)) {
stats->rx_dropped++;
goto release_desc;
}
dma_addr = dma_map_single(&netdev->dev,
new_data + NET_SKB_PAD + pad,
ring->rx_buf_size,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&netdev->dev, dma_addr))) {
skb_free_frag(new_data);
goto release_desc;
}
/* receive data */
skb = build_skb(data, ring->frag_size);
if (unlikely(!skb)) {
skb_free_frag(new_data);
goto release_desc;
}
skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
dma_unmap_single(&netdev->dev, trxd.rxd1,
ring->rx_buf_size, DMA_FROM_DEVICE);
pktlen = RX_DMA_GET_PLEN0(trxd.rxd2);
skb->dev = netdev;
skb_put(skb, pktlen);
if (trxd.rxd4 & checksum_bit)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
skb->protocol = eth_type_trans(skb, netdev);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX &&
RX_DMA_VID(trxd.rxd3))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
RX_DMA_VID(trxd.rxd3));
#ifdef CONFIG_NET_RALINK_OFFLOAD
if (mtk_offload_check_rx(priv, skb, trxd.rxd4) == 0) {
#endif
stats->rx_packets++;
stats->rx_bytes += pktlen;
napi_gro_receive(napi, skb);
#ifdef CONFIG_NET_RALINK_OFFLOAD
} else {
dev_kfree_skb(skb);
}
#endif
ring->rx_data[idx] = new_data;
rxd->rxd1 = (unsigned int)dma_addr;
release_desc:
if (priv->flags & FE_FLAG_RX_SG_DMA)
rxd->rxd2 = RX_DMA_PLEN0(ring->rx_buf_size);
else
rxd->rxd2 = RX_DMA_LSO;
ring->rx_calc_idx = idx;
/* make sure that all changes to the dma ring are flushed before
* we continue
*/
wmb();
fe_reg_w32(ring->rx_calc_idx, FE_REG_RX_CALC_IDX0);
done++;
}
if (done < budget)
fe_reg_w32(rx_intr, FE_REG_FE_INT_STATUS);
return done;
}
static int fe_poll_tx(struct fe_priv *priv, int budget, u32 tx_intr,
int *tx_again)
{
struct net_device *netdev = priv->netdev;
struct device *dev = &netdev->dev;
unsigned int bytes_compl = 0;
struct sk_buff *skb;
struct fe_tx_buf *tx_buf;
int done = 0;
u32 idx, hwidx;
struct fe_tx_ring *ring = &priv->tx_ring;
idx = ring->tx_free_idx;
hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
while ((idx != hwidx) && budget) {
tx_buf = &ring->tx_buf[idx];
skb = tx_buf->skb;
if (!skb)
break;
if (skb != (struct sk_buff *)DMA_DUMMY_DESC) {
bytes_compl += skb->len;
done++;
budget--;
}
fe_txd_unmap(dev, tx_buf);
idx = NEXT_TX_DESP_IDX(idx);
}
ring->tx_free_idx = idx;
if (idx == hwidx) {
/* read hw index again make sure no new tx packet */
hwidx = fe_reg_r32(FE_REG_TX_DTX_IDX0);
if (idx == hwidx)
fe_reg_w32(tx_intr, FE_REG_FE_INT_STATUS);
else
*tx_again = 1;
} else {
*tx_again = 1;
}
if (done) {
netdev_completed_queue(netdev, done, bytes_compl);
smp_mb();
if (unlikely(netif_queue_stopped(netdev) &&
(fe_empty_txd(ring) > ring->tx_thresh)))
netif_wake_queue(netdev);
}
return done;
}
static int fe_poll(struct napi_struct *napi, int budget)
{
struct fe_priv *priv = container_of(napi, struct fe_priv, rx_napi);
struct fe_hw_stats *hwstat = priv->hw_stats;
int tx_done, rx_done, tx_again;
u32 status, fe_status, status_reg, mask;
u32 tx_intr, rx_intr, status_intr;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
fe_status = status;
tx_intr = priv->soc->tx_int;
rx_intr = priv->soc->rx_int;
status_intr = priv->soc->status_int;
tx_done = 0;
rx_done = 0;
tx_again = 0;
if (fe_reg_table[FE_REG_FE_INT_STATUS2]) {
fe_status = fe_reg_r32(FE_REG_FE_INT_STATUS2);
status_reg = FE_REG_FE_INT_STATUS2;
} else {
status_reg = FE_REG_FE_INT_STATUS;
}
if (status & tx_intr)
tx_done = fe_poll_tx(priv, budget, tx_intr, &tx_again);
if (status & rx_intr)
rx_done = fe_poll_rx(napi, budget, priv, rx_intr);
if (unlikely(fe_status & status_intr)) {
if (hwstat && spin_trylock(&hwstat->stats_lock)) {
fe_stats_update(priv);
spin_unlock(&hwstat->stats_lock);
}
fe_reg_w32(status_intr, status_reg);
}
if (unlikely(netif_msg_intr(priv))) {
mask = fe_reg_r32(FE_REG_FE_INT_ENABLE);
netdev_info(priv->netdev,
"done tx %d, rx %d, intr 0x%08x/0x%x\n",
tx_done, rx_done, status, mask);
}
if (!tx_again && (rx_done < budget)) {
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (status & (tx_intr | rx_intr)) {
/* let napi poll again */
rx_done = budget;
goto poll_again;
}
napi_complete_done(napi, rx_done);
fe_int_enable(tx_intr | rx_intr);
} else {
rx_done = budget;
}
poll_again:
return rx_done;
}
static void fe_tx_timeout(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct fe_tx_ring *ring = &priv->tx_ring;
priv->netdev->stats.tx_errors++;
netif_err(priv, tx_err, dev,
"transmit timed out\n");
netif_info(priv, drv, dev, "dma_cfg:%08x\n",
fe_reg_r32(FE_REG_PDMA_GLO_CFG));
netif_info(priv, drv, dev, "tx_ring=%d, "
"base=%08x, max=%u, ctx=%u, dtx=%u, fdx=%hu, next=%hu\n",
0, fe_reg_r32(FE_REG_TX_BASE_PTR0),
fe_reg_r32(FE_REG_TX_MAX_CNT0),
fe_reg_r32(FE_REG_TX_CTX_IDX0),
fe_reg_r32(FE_REG_TX_DTX_IDX0),
ring->tx_free_idx,
ring->tx_next_idx);
netif_info(priv, drv, dev,
"rx_ring=%d, base=%08x, max=%u, calc=%u, drx=%u\n",
0, fe_reg_r32(FE_REG_RX_BASE_PTR0),
fe_reg_r32(FE_REG_RX_MAX_CNT0),
fe_reg_r32(FE_REG_RX_CALC_IDX0),
fe_reg_r32(FE_REG_RX_DRX_IDX0));
if (!test_and_set_bit(FE_FLAG_RESET_PENDING, priv->pending_flags))
schedule_work(&priv->pending_work);
}
static irqreturn_t fe_handle_irq(int irq, void *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 status, int_mask;
status = fe_reg_r32(FE_REG_FE_INT_STATUS);
if (unlikely(!status))
return IRQ_NONE;
int_mask = (priv->soc->rx_int | priv->soc->tx_int);
if (likely(status & int_mask)) {
if (likely(napi_schedule_prep(&priv->rx_napi))) {
fe_int_disable(int_mask);
__napi_schedule(&priv->rx_napi);
}
} else {
fe_reg_w32(status, FE_REG_FE_INT_STATUS);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void fe_poll_controller(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
u32 int_mask = priv->soc->tx_int | priv->soc->rx_int;
fe_int_disable(int_mask);
fe_handle_irq(dev->irq, dev);
fe_int_enable(int_mask);
}
#endif
int fe_set_clock_cycle(struct fe_priv *priv)
{
unsigned long sysclk = priv->sysclk;
sysclk /= FE_US_CYC_CNT_DIVISOR;
sysclk <<= FE_US_CYC_CNT_SHIFT;
fe_w32((fe_r32(FE_FE_GLO_CFG) &
~(FE_US_CYC_CNT_MASK << FE_US_CYC_CNT_SHIFT)) |
sysclk,
FE_FE_GLO_CFG);
return 0;
}
void fe_fwd_config(struct fe_priv *priv)
{
u32 fwd_cfg;
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
/* disable jumbo frame */
if (priv->flags & FE_FLAG_JUMBO_FRAME)
fwd_cfg &= ~FE_GDM1_JMB_EN;
/* set unicast/multicast/broadcast frame to cpu */
fwd_cfg &= ~0xffff;
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}
static void fe_rxcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) | (FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
else
fe_w32(fe_r32(FE_GDMA1_FWD_CFG) & ~(FE_GDM1_ICS_EN |
FE_GDM1_TCS_EN | FE_GDM1_UCS_EN),
FE_GDMA1_FWD_CFG);
}
static void fe_txcsum_config(bool enable)
{
if (enable)
fe_w32(fe_r32(FE_CDMA_CSG_CFG) | (FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
else
fe_w32(fe_r32(FE_CDMA_CSG_CFG) & ~(FE_ICS_GEN_EN |
FE_TCS_GEN_EN | FE_UCS_GEN_EN),
FE_CDMA_CSG_CFG);
}
void fe_csum_config(struct fe_priv *priv)
{
struct net_device *dev = priv_netdev(priv);
fe_txcsum_config((dev->features & NETIF_F_IP_CSUM));
fe_rxcsum_config((dev->features & NETIF_F_RXCSUM));
}
static int fe_hw_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
int i, err;
err = devm_request_irq(priv->dev, dev->irq, fe_handle_irq, 0,
dev_name(priv->dev), dev);
if (err)
return err;
if (priv->soc->set_mac)
priv->soc->set_mac(priv, dev->dev_addr);
else
fe_hw_set_macaddr(priv, dev->dev_addr);
/* disable delay interrupt */
fe_reg_w32(0, FE_REG_DLY_INT_CFG);
fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
/* frame engine will push VLAN tag regarding to VIDX feild in Tx desc */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
for (i = 0; i < 16; i += 2)
fe_w32(((i + 1) << 16) + i,
fe_reg_table[FE_REG_FE_DMA_VID_BASE] +
(i * 2));
if (priv->soc->fwd_config(priv))
netdev_err(dev, "unable to get clock\n");
if (fe_reg_table[FE_REG_FE_RST_GL]) {
fe_reg_w32(1, FE_REG_FE_RST_GL);
fe_reg_w32(0, FE_REG_FE_RST_GL);
}
return 0;
}
static int fe_open(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
u32 val;
int err;
err = fe_init_dma(priv);
if (err) {
fe_free_dma(priv);
return err;
}
spin_lock_irqsave(&priv->page_lock, flags);
val = FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN;
if (priv->flags & FE_FLAG_RX_2B_OFFSET)
val |= FE_RX_2B_OFFSET;
val |= priv->soc->pdma_glo_cfg;
fe_reg_w32(val, FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
if (priv->phy)
priv->phy->start(priv);
if (priv->soc->has_carrier && priv->soc->has_carrier(priv))
netif_carrier_on(dev);
napi_enable(&priv->rx_napi);
fe_int_enable(priv->soc->tx_int | priv->soc->rx_int);
netif_start_queue(dev);
#ifdef CONFIG_NET_RALINK_OFFLOAD
mtk_ppe_probe(priv);
#endif
return 0;
}
static int fe_stop(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
unsigned long flags;
int i;
netif_tx_disable(dev);
fe_int_disable(priv->soc->tx_int | priv->soc->rx_int);
napi_disable(&priv->rx_napi);
if (priv->phy)
priv->phy->stop(priv);
spin_lock_irqsave(&priv->page_lock, flags);
fe_reg_w32(fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
~(FE_TX_WB_DDONE | FE_RX_DMA_EN | FE_TX_DMA_EN),
FE_REG_PDMA_GLO_CFG);
spin_unlock_irqrestore(&priv->page_lock, flags);
/* wait dma stop */
for (i = 0; i < 10; i++) {
if (fe_reg_r32(FE_REG_PDMA_GLO_CFG) &
(FE_TX_DMA_BUSY | FE_RX_DMA_BUSY)) {
msleep(20);
continue;
}
break;
}
fe_free_dma(priv);
#ifdef CONFIG_NET_RALINK_OFFLOAD
mtk_ppe_remove(priv);
#endif
return 0;
}
static void fe_reset_phy(struct fe_priv *priv)
{
int err, msec = 30;
struct gpio_desc *phy_reset;
phy_reset = devm_gpiod_get_optional(priv->dev, "phy-reset",
GPIOD_OUT_HIGH);
if (!phy_reset)
return;
if (IS_ERR(phy_reset)) {
dev_err(priv->dev, "Error acquiring reset gpio pins: %ld\n",
PTR_ERR(phy_reset));
return;
}
err = of_property_read_u32(priv->dev->of_node, "phy-reset-duration",
&msec);
if (!err && msec > 1000)
msec = 30;
if (msec > 20)
msleep(msec);
else
usleep_range(msec * 1000, msec * 1000 + 1000);
gpiod_set_value(phy_reset, 0);
}
static int __init fe_init(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
struct device_node *port;
const char *mac_addr;
int err;
priv->soc->reset_fe();
if (priv->soc->switch_init)
if (priv->soc->switch_init(priv)) {
netdev_err(dev, "failed to initialize switch core\n");
return -ENODEV;
}
fe_reset_phy(priv);
mac_addr = of_get_mac_address(priv->dev->of_node);
if (mac_addr)
ether_addr_copy(dev->dev_addr, mac_addr);
/* If the mac address is invalid, use random mac address */
if (!is_valid_ether_addr(dev->dev_addr)) {
eth_hw_addr_random(dev);
dev_err(priv->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
err = fe_mdio_init(priv);
if (err)
return err;
if (priv->soc->port_init)
for_each_child_of_node(priv->dev->of_node, port)
if (of_device_is_compatible(port, "mediatek,eth-port") &&
of_device_is_available(port))
priv->soc->port_init(priv, port);
if (priv->phy) {
err = priv->phy->connect(priv);
if (err)
goto err_phy_disconnect;
}
err = fe_hw_init(dev);
if (err)
goto err_phy_disconnect;
if ((priv->flags & FE_FLAG_HAS_SWITCH) && priv->soc->switch_config)
priv->soc->switch_config(priv);
return 0;
err_phy_disconnect:
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
return err;
}
static void fe_uninit(struct net_device *dev)
{
struct fe_priv *priv = netdev_priv(dev);
if (priv->phy)
priv->phy->disconnect(priv);
fe_mdio_cleanup(priv);
fe_reg_w32(0, FE_REG_FE_INT_ENABLE);
free_irq(dev->irq, dev);
}
static int fe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct fe_priv *priv = netdev_priv(dev);
if (!priv->phy_dev)
return -ENODEV;
return phy_mii_ioctl(priv->phy_dev, ifr, cmd);
}
static int fe_change_mtu(struct net_device *dev, int new_mtu)
{
struct fe_priv *priv = netdev_priv(dev);
int frag_size, old_mtu;
u32 fwd_cfg;
old_mtu = dev->mtu;
dev->mtu = new_mtu;
if (!(priv->flags & FE_FLAG_JUMBO_FRAME))
return 0;
/* return early if the buffer sizes will not change */
if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
return 0;
if (old_mtu > ETH_DATA_LEN && new_mtu > ETH_DATA_LEN)
return 0;
if (new_mtu <= ETH_DATA_LEN)
priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
else
priv->rx_ring.frag_size = PAGE_SIZE;
priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
if (!netif_running(dev))
return 0;
fe_stop(dev);
if (!IS_ENABLED(CONFIG_SOC_MT7621)) {
fwd_cfg = fe_r32(FE_GDMA1_FWD_CFG);
if (new_mtu <= ETH_DATA_LEN) {
fwd_cfg &= ~FE_GDM1_JMB_EN;
} else {
frag_size = fe_max_frag_size(new_mtu);
fwd_cfg &= ~(FE_GDM1_JMB_LEN_MASK << FE_GDM1_JMB_LEN_SHIFT);
fwd_cfg |= (DIV_ROUND_UP(frag_size, 1024) <<
FE_GDM1_JMB_LEN_SHIFT) | FE_GDM1_JMB_EN;
}
fe_w32(fwd_cfg, FE_GDMA1_FWD_CFG);
}
return fe_open(dev);
}
#ifdef CONFIG_NET_RALINK_OFFLOAD
static int
fe_flow_offload(enum flow_offload_type type, struct flow_offload *flow,
struct flow_offload_hw_path *src,
struct flow_offload_hw_path *dest)
{
struct fe_priv *priv;
if (src->dev != dest->dev)
return -EINVAL;
priv = netdev_priv(src->dev);
return mtk_flow_offload(priv, type, flow, src, dest);
}
#endif
static const struct net_device_ops fe_netdev_ops = {
.ndo_init = fe_init,
.ndo_uninit = fe_uninit,
.ndo_open = fe_open,
.ndo_stop = fe_stop,
.ndo_start_xmit = fe_start_xmit,
.ndo_set_mac_address = fe_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = fe_do_ioctl,
.ndo_change_mtu = fe_change_mtu,
.ndo_tx_timeout = fe_tx_timeout,
.ndo_get_stats64 = fe_get_stats64,
.ndo_vlan_rx_add_vid = fe_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = fe_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fe_poll_controller,
#endif
#ifdef CONFIG_NET_RALINK_OFFLOAD
.ndo_flow_offload = fe_flow_offload,
#endif
};
static void fe_reset_pending(struct fe_priv *priv)
{
struct net_device *dev = priv->netdev;
int err;
rtnl_lock();
fe_stop(dev);
err = fe_open(dev);
if (err) {
netif_alert(priv, ifup, dev,
"Driver up/down cycle failed, closing device.\n");
dev_close(dev);
}
rtnl_unlock();
}
static const struct fe_work_t fe_work[] = {
{FE_FLAG_RESET_PENDING, fe_reset_pending},
};
static void fe_pending_work(struct work_struct *work)
{
struct fe_priv *priv = container_of(work, struct fe_priv, pending_work);
int i;
bool pending;
for (i = 0; i < ARRAY_SIZE(fe_work); i++) {
pending = test_and_clear_bit(fe_work[i].bitnr,
priv->pending_flags);
if (pending)
fe_work[i].action(priv);
}
}
static int fe_probe(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
const struct of_device_id *match;
struct fe_soc_data *soc;
struct net_device *netdev;
struct fe_priv *priv;
struct clk *sysclk;
int err, napi_weight;
device_reset(&pdev->dev);
match = of_match_device(of_fe_match, &pdev->dev);
soc = (struct fe_soc_data *)match->data;
if (soc->reg_table)
fe_reg_table = soc->reg_table;
else
soc->reg_table = fe_reg_table;
fe_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fe_base)) {
err = -EADDRNOTAVAIL;
goto err_out;
}
netdev = alloc_etherdev(sizeof(*priv));
if (!netdev) {
dev_err(&pdev->dev, "alloc_etherdev failed\n");
err = -ENOMEM;
goto err_iounmap;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->netdev_ops = &fe_netdev_ops;
netdev->base_addr = (unsigned long)fe_base;
netdev->irq = platform_get_irq(pdev, 0);
if (netdev->irq < 0) {
dev_err(&pdev->dev, "no IRQ resource found\n");
err = -ENXIO;
goto err_free_dev;
}
if (soc->init_data)
soc->init_data(soc, netdev);
netdev->vlan_features = netdev->hw_features &
~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX);
netdev->features |= netdev->hw_features;
if (IS_ENABLED(CONFIG_SOC_MT7621))
netdev->max_mtu = 2048;
/* fake rx vlan filter func. to support tx vlan offload func */
if (fe_reg_table[FE_REG_FE_DMA_VID_BASE])
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
priv = netdev_priv(netdev);
spin_lock_init(&priv->page_lock);
if (fe_reg_table[FE_REG_FE_COUNTER_BASE]) {
priv->hw_stats = kzalloc(sizeof(*priv->hw_stats), GFP_KERNEL);
if (!priv->hw_stats) {
err = -ENOMEM;
goto err_free_dev;
}
spin_lock_init(&priv->hw_stats->stats_lock);
}
sysclk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(sysclk)) {
priv->sysclk = clk_get_rate(sysclk);
} else if ((priv->flags & FE_FLAG_CALIBRATE_CLK)) {
dev_err(&pdev->dev, "this soc needs a clk for calibration\n");
err = -ENXIO;
goto err_free_dev;
}
priv->switch_np = of_parse_phandle(pdev->dev.of_node, "mediatek,switch", 0);
if ((priv->flags & FE_FLAG_HAS_SWITCH) && !priv->switch_np) {
dev_err(&pdev->dev, "failed to read switch phandle\n");
err = -ENODEV;
goto err_free_dev;
}
priv->netdev = netdev;
priv->dev = &pdev->dev;
priv->soc = soc;
priv->msg_enable = netif_msg_init(fe_msg_level, FE_DEFAULT_MSG_ENABLE);
priv->rx_ring.frag_size = fe_max_frag_size(ETH_DATA_LEN);
priv->rx_ring.rx_buf_size = fe_max_buf_size(priv->rx_ring.frag_size);
priv->tx_ring.tx_ring_size = NUM_DMA_DESC;
priv->rx_ring.rx_ring_size = NUM_DMA_DESC;
INIT_WORK(&priv->pending_work, fe_pending_work);
u64_stats_init(&priv->hw_stats->syncp);
napi_weight = 16;
if (priv->flags & FE_FLAG_NAPI_WEIGHT) {
napi_weight *= 4;
priv->tx_ring.tx_ring_size *= 4;
priv->rx_ring.rx_ring_size *= 4;
}
netif_napi_add(netdev, &priv->rx_napi, fe_poll, napi_weight);
fe_set_ethtool_ops(netdev);
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "error bringing up device\n");
goto err_free_dev;
}
platform_set_drvdata(pdev, netdev);
netif_info(priv, probe, netdev, "mediatek frame engine at 0x%08lx, irq %d\n",
netdev->base_addr, netdev->irq);
return 0;
err_free_dev:
free_netdev(netdev);
err_iounmap:
devm_iounmap(&pdev->dev, fe_base);
err_out:
return err;
}
static int fe_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct fe_priv *priv = netdev_priv(dev);
netif_napi_del(&priv->rx_napi);
kfree(priv->hw_stats);
cancel_work_sync(&priv->pending_work);
unregister_netdev(dev);
free_netdev(dev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver fe_driver = {
.probe = fe_probe,
.remove = fe_remove,
.driver = {
.name = "mtk_soc_eth",
.owner = THIS_MODULE,
.of_match_table = of_fe_match,
},
};
module_platform_driver(fe_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Crispin <blogic@openwrt.org>");
MODULE_DESCRIPTION("Ethernet driver for Ralink SoC");
MODULE_VERSION(MTK_FE_DRV_VERSION);