/* * Lantiq SoC SPI controller * * Copyright (C) 2011 Daniel Schwierzeck * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LTQ_SPI_CLC 0x00 /* Clock control */ #define LTQ_SPI_PISEL 0x04 /* Port input select */ #define LTQ_SPI_ID 0x08 /* Identification */ #define LTQ_SPI_CON 0x10 /* Control */ #define LTQ_SPI_STAT 0x14 /* Status */ #define LTQ_SPI_WHBSTATE 0x18 /* Write HW modified state */ #define LTQ_SPI_TB 0x20 /* Transmit buffer */ #define LTQ_SPI_RB 0x24 /* Receive buffer */ #define LTQ_SPI_RXFCON 0x30 /* Receive FIFO control */ #define LTQ_SPI_TXFCON 0x34 /* Transmit FIFO control */ #define LTQ_SPI_FSTAT 0x38 /* FIFO status */ #define LTQ_SPI_BRT 0x40 /* Baudrate timer */ #define LTQ_SPI_BRSTAT 0x44 /* Baudrate timer status */ #define LTQ_SPI_SFCON 0x60 /* Serial frame control */ #define LTQ_SPI_SFSTAT 0x64 /* Serial frame status */ #define LTQ_SPI_GPOCON 0x70 /* General purpose output control */ #define LTQ_SPI_GPOSTAT 0x74 /* General purpose output status */ #define LTQ_SPI_FGPO 0x78 /* Forced general purpose output */ #define LTQ_SPI_RXREQ 0x80 /* Receive request */ #define LTQ_SPI_RXCNT 0x84 /* Receive count */ #define LTQ_SPI_DMACON 0xEC /* DMA control */ #define LTQ_SPI_IRNEN 0xF4 /* Interrupt node enable */ #define LTQ_SPI_IRNICR 0xF8 /* Interrupt node interrupt capture */ #define LTQ_SPI_IRNCR 0xFC /* Interrupt node control */ #define LTQ_SPI_CLC_SMC_SHIFT 16 /* Clock divider for sleep mode */ #define LTQ_SPI_CLC_SMC_MASK 0xFF #define LTQ_SPI_CLC_RMC_SHIFT 8 /* Clock divider for normal run mode */ #define LTQ_SPI_CLC_RMC_MASK 0xFF #define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */ #define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */ #define LTQ_SPI_ID_TXFS_SHIFT 24 /* Implemented TX FIFO size */ #define LTQ_SPI_ID_TXFS_MASK 0x3F #define LTQ_SPI_ID_RXFS_SHIFT 16 /* Implemented RX FIFO size */ #define LTQ_SPI_ID_RXFS_MASK 0x3F #define LTQ_SPI_ID_REV_MASK 0x1F /* Hardware revision number */ #define LTQ_SPI_ID_CFG BIT(5) /* DMA interface support */ #define LTQ_SPI_CON_BM_SHIFT 16 /* Data width selection */ #define LTQ_SPI_CON_BM_MASK 0x1F #define LTQ_SPI_CON_EM BIT(24) /* Echo mode */ #define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */ #define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */ #define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */ #define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */ #define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */ #define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */ #define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */ #define LTQ_SPI_CON_LB BIT(7) /* Loopback control */ #define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */ #define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */ #define LTQ_SPI_CON_HB BIT(4) /* Heading control */ #define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */ #define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */ #define LTQ_SPI_STAT_RXBV_MASK 0x7 #define LTQ_SPI_STAT_RXBV_SHIFT 28 #define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */ #define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */ #define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */ #define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */ #define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */ #define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */ #define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */ #define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */ #define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */ #define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */ #define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */ #define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */ #define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */ #define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */ #define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */ #define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */ #define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */ #define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */ #define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */ #define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */ #define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */ #define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */ #define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */ #define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */ #define LTQ_SPI_WHBSTATE_CLR_ERRORS 0x0F50 #define LTQ_SPI_RXFCON_RXFITL_SHIFT 8 /* FIFO interrupt trigger level */ #define LTQ_SPI_RXFCON_RXFITL_MASK 0x3F #define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */ #define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */ #define LTQ_SPI_TXFCON_TXFITL_SHIFT 8 /* FIFO interrupt trigger level */ #define LTQ_SPI_TXFCON_TXFITL_MASK 0x3F #define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */ #define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */ #define LTQ_SPI_FSTAT_RXFFL_MASK 0x3f #define LTQ_SPI_FSTAT_RXFFL_SHIFT 0 #define LTQ_SPI_FSTAT_TXFFL_MASK 0x3f #define LTQ_SPI_FSTAT_TXFFL_SHIFT 8 #define LTQ_SPI_GPOCON_ISCSBN_SHIFT 8 #define LTQ_SPI_GPOCON_INVOUTN_SHIFT 0 #define LTQ_SPI_FGPO_SETOUTN_SHIFT 8 #define LTQ_SPI_FGPO_CLROUTN_SHIFT 0 #define LTQ_SPI_RXREQ_RXCNT_MASK 0xFFFF /* Receive count value */ #define LTQ_SPI_RXCNT_TODO_MASK 0xFFFF /* Recevie to-do value */ #define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */ #define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */ #define LTQ_SPI_IRNEN_T BIT(1) /* Transmit end interrupt request */ #define LTQ_SPI_IRNEN_R BIT(0) /* Receive end interrupt request */ #define LTQ_SPI_IRNEN_ALL 0xF /* Hard-wired GPIOs used by SPI controller */ #define LTQ_SPI_GPIO_DI (ltq_is_ase()? 8 : 16) #define LTQ_SPI_GPIO_DO (ltq_is_ase()? 9 : 17) #define LTQ_SPI_GPIO_CLK (ltq_is_ase()? 10 : 18) struct ltq_spi { struct spi_bitbang bitbang; struct completion done; spinlock_t lock; struct device *dev; void __iomem *base; struct clk *fpiclk; struct clk *spiclk; int status; int irq[3]; const u8 *tx; u8 *rx; u32 tx_cnt; u32 rx_cnt; u32 len; struct spi_transfer *curr_transfer; u32 (*get_tx) (struct ltq_spi *); u16 txfs; u16 rxfs; unsigned dma_support:1; unsigned cfg_mode:1; }; struct ltq_spi_controller_state { void (*cs_activate) (struct spi_device *); void (*cs_deactivate) (struct spi_device *); }; struct ltq_spi_irq_map { char *name; irq_handler_t handler; }; struct ltq_spi_cs_gpio_map { unsigned gpio; unsigned mux; }; static inline struct ltq_spi *ltq_spi_to_hw(struct spi_device *spi) { return spi_master_get_devdata(spi->master); } static inline u32 ltq_spi_reg_read(struct ltq_spi *hw, u32 reg) { return ioread32be(hw->base + reg); } static inline void ltq_spi_reg_write(struct ltq_spi *hw, u32 val, u32 reg) { iowrite32be(val, hw->base + reg); } static inline void ltq_spi_reg_setbit(struct ltq_spi *hw, u32 bits, u32 reg) { u32 val; val = ltq_spi_reg_read(hw, reg); val |= bits; ltq_spi_reg_write(hw, val, reg); } static inline void ltq_spi_reg_clearbit(struct ltq_spi *hw, u32 bits, u32 reg) { u32 val; val = ltq_spi_reg_read(hw, reg); val &= ~bits; ltq_spi_reg_write(hw, val, reg); } static void ltq_spi_hw_enable(struct ltq_spi *hw) { u32 clc; /* Power-up mdule */ clk_enable(hw->spiclk); /* * Set clock divider for run mode to 1 to * run at same frequency as FPI bus */ clc = (1 << LTQ_SPI_CLC_RMC_SHIFT); ltq_spi_reg_write(hw, clc, LTQ_SPI_CLC); } static void ltq_spi_hw_disable(struct ltq_spi *hw) { /* Set clock divider to 0 and set module disable bit */ ltq_spi_reg_write(hw, LTQ_SPI_CLC_DISS, LTQ_SPI_CLC); /* Power-down mdule */ clk_disable(hw->spiclk); } static void ltq_spi_reset_fifos(struct ltq_spi *hw) { u32 val; /* * Enable and flush FIFOs. Set interrupt trigger level to * half of FIFO count implemented in hardware. */ if (hw->txfs > 1) { val = hw->txfs << (LTQ_SPI_TXFCON_TXFITL_SHIFT - 1); val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU; ltq_spi_reg_write(hw, val, LTQ_SPI_TXFCON); } if (hw->rxfs > 1) { val = hw->rxfs << (LTQ_SPI_RXFCON_RXFITL_SHIFT - 1); val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU; ltq_spi_reg_write(hw, val, LTQ_SPI_RXFCON); } } static inline int ltq_spi_wait_ready(struct ltq_spi *hw) { u32 stat; unsigned long timeout; timeout = jiffies + msecs_to_jiffies(200); do { stat = ltq_spi_reg_read(hw, LTQ_SPI_STAT); if (!(stat & LTQ_SPI_STAT_BSY)) return 0; cond_resched(); } while (!time_after_eq(jiffies, timeout)); dev_err(hw->dev, "SPI wait ready timed out stat: %x\n", stat); return -ETIMEDOUT; } static void ltq_spi_config_mode_set(struct ltq_spi *hw) { if (hw->cfg_mode) return; /* * Putting the SPI module in config mode is only safe if no * transfer is in progress as indicated by busy flag STATE.BSY. */ if (ltq_spi_wait_ready(hw)) { ltq_spi_reset_fifos(hw); hw->status = -ETIMEDOUT; } ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE); hw->cfg_mode = 1; } static void ltq_spi_run_mode_set(struct ltq_spi *hw) { if (!hw->cfg_mode) return; ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE); hw->cfg_mode = 0; } static u32 ltq_spi_tx_word_u8(struct ltq_spi *hw) { const u8 *tx = hw->tx; u32 data = *tx++; hw->tx_cnt++; hw->tx++; return data; } static u32 ltq_spi_tx_word_u16(struct ltq_spi *hw) { const u16 *tx = (u16 *) hw->tx; u32 data = *tx++; hw->tx_cnt += 2; hw->tx += 2; return data; } static u32 ltq_spi_tx_word_u32(struct ltq_spi *hw) { const u32 *tx = (u32 *) hw->tx; u32 data = *tx++; hw->tx_cnt += 4; hw->tx += 4; return data; } static void ltq_spi_bits_per_word_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 bm; u8 bits_per_word = spi->bits_per_word; /* * Use either default value of SPI device or value * from current transfer. */ if (hw->curr_transfer && hw->curr_transfer->bits_per_word) bits_per_word = hw->curr_transfer->bits_per_word; if (bits_per_word <= 8) hw->get_tx = ltq_spi_tx_word_u8; else if (bits_per_word <= 16) hw->get_tx = ltq_spi_tx_word_u16; else if (bits_per_word <= 32) hw->get_tx = ltq_spi_tx_word_u32; /* CON.BM value = bits_per_word - 1 */ bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_SHIFT; ltq_spi_reg_clearbit(hw, LTQ_SPI_CON_BM_MASK << LTQ_SPI_CON_BM_SHIFT, LTQ_SPI_CON); ltq_spi_reg_setbit(hw, bm, LTQ_SPI_CON); } static void ltq_spi_speed_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 br, max_speed_hz, spi_clk; u32 speed_hz = spi->max_speed_hz; /* * Use either default value of SPI device or value * from current transfer. */ if (hw->curr_transfer && hw->curr_transfer->speed_hz) speed_hz = hw->curr_transfer->speed_hz; /* * SPI module clock is derived from FPI bus clock dependent on * divider value in CLC.RMS which is always set to 1. */ spi_clk = clk_get_rate(hw->fpiclk); /* * Maximum SPI clock frequency in master mode is half of * SPI module clock frequency. Maximum reload value of * baudrate generator BR is 2^16. */ max_speed_hz = spi_clk / 2; if (speed_hz >= max_speed_hz) br = 0; else br = (max_speed_hz / speed_hz) - 1; if (br > 0xFFFF) br = 0xFFFF; ltq_spi_reg_write(hw, br, LTQ_SPI_BRT); } static void ltq_spi_clockmode_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 con; con = ltq_spi_reg_read(hw, LTQ_SPI_CON); /* * SPI mode mapping in CON register: * Mode CPOL CPHA CON.PO CON.PH * 0 0 0 0 1 * 1 0 1 0 0 * 2 1 0 1 1 * 3 1 1 1 0 */ if (spi->mode & SPI_CPHA) con &= ~LTQ_SPI_CON_PH; else con |= LTQ_SPI_CON_PH; if (spi->mode & SPI_CPOL) con |= LTQ_SPI_CON_PO; else con &= ~LTQ_SPI_CON_PO; /* Set heading control */ if (spi->mode & SPI_LSB_FIRST) con &= ~LTQ_SPI_CON_HB; else con |= LTQ_SPI_CON_HB; ltq_spi_reg_write(hw, con, LTQ_SPI_CON); } static void ltq_spi_xmit_set(struct ltq_spi *hw, struct spi_transfer *t) { u32 con; con = ltq_spi_reg_read(hw, LTQ_SPI_CON); if (t) { if (t->tx_buf && t->rx_buf) { con &= ~(LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF); } else if (t->rx_buf) { con &= ~LTQ_SPI_CON_RXOFF; con |= LTQ_SPI_CON_TXOFF; } else if (t->tx_buf) { con &= ~LTQ_SPI_CON_TXOFF; con |= LTQ_SPI_CON_RXOFF; } } else con |= (LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF); ltq_spi_reg_write(hw, con, LTQ_SPI_CON); } static void ltq_spi_gpio_cs_activate(struct spi_device *spi) { struct ltq_spi_controller_data *cdata = spi->controller_data; int val = spi->mode & SPI_CS_HIGH ? 1 : 0; gpio_set_value(cdata->gpio, val); } static void ltq_spi_gpio_cs_deactivate(struct spi_device *spi) { struct ltq_spi_controller_data *cdata = spi->controller_data; int val = spi->mode & SPI_CS_HIGH ? 0 : 1; gpio_set_value(cdata->gpio, val); } static void ltq_spi_internal_cs_activate(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 fgpo; fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_CLROUTN_SHIFT)); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); } static void ltq_spi_internal_cs_deactivate(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 fgpo; fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT)); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); } static void ltq_spi_chipselect(struct spi_device *spi, int cs) { struct ltq_spi *hw = ltq_spi_to_hw(spi); struct ltq_spi_controller_state *cstate = spi->controller_state; switch (cs) { case BITBANG_CS_ACTIVE: ltq_spi_bits_per_word_set(spi); ltq_spi_speed_set(spi); ltq_spi_clockmode_set(spi); ltq_spi_run_mode_set(hw); cstate->cs_activate(spi); break; case BITBANG_CS_INACTIVE: cstate->cs_deactivate(spi); ltq_spi_config_mode_set(hw); break; } } static int ltq_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u8 bits_per_word = spi->bits_per_word; hw->curr_transfer = t; if (t && t->bits_per_word) bits_per_word = t->bits_per_word; if (bits_per_word > 32) return -EINVAL; ltq_spi_config_mode_set(hw); return 0; } static const struct ltq_spi_cs_gpio_map ltq_spi_cs[] = { { 15, 2 }, { 22, 2 }, { 13, 1 }, { 10, 1 }, { 9, 1 }, { 11, 3 }, }; static const struct ltq_spi_cs_gpio_map ltq_spi_cs_ase[] = { { 7, 2 }, { 15, 1 }, { 14, 1 }, }; static int ltq_spi_setup(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); struct ltq_spi_controller_data *cdata = spi->controller_data; struct ltq_spi_controller_state *cstate; u32 gpocon, fgpo; int ret; /* Set default word length to 8 if not set */ if (!spi->bits_per_word) spi->bits_per_word = 8; if (spi->bits_per_word > 32) return -EINVAL; if (!spi->controller_state) { cstate = kzalloc(sizeof(struct ltq_spi_controller_state), GFP_KERNEL); if (!cstate) return -ENOMEM; spi->controller_state = cstate; } else return 0; /* * Up to six GPIOs can be connected to the SPI module * via GPIO alternate function to control the chip select lines. * For more flexibility in board layout this driver can also control * the CS lines via GPIO API. If GPIOs should be used, board setup code * have to register the SPI device with struct ltq_spi_controller_data * attached. */ if (cdata && cdata->gpio) { ret = gpio_request(cdata->gpio, "spi-cs"); if (ret) return -EBUSY; ret = spi->mode & SPI_CS_HIGH ? 0 : 1; gpio_direction_output(cdata->gpio, ret); cstate->cs_activate = ltq_spi_gpio_cs_activate; cstate->cs_deactivate = ltq_spi_gpio_cs_deactivate; } else { struct ltq_spi_cs_gpio_map *cs_map = ltq_is_ase() ? ltq_spi_cs_ase : ltq_spi_cs; ret = ltq_gpio_request(&spi->dev, cs_map[spi->chip_select].gpio, cs_map[spi->chip_select].mux, 1, "spi-cs"); if (ret) return -EBUSY; gpocon = (1 << (spi->chip_select + LTQ_SPI_GPOCON_ISCSBN_SHIFT)); if (spi->mode & SPI_CS_HIGH) gpocon |= (1 << spi->chip_select); fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT)); ltq_spi_reg_setbit(hw, gpocon, LTQ_SPI_GPOCON); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); cstate->cs_activate = ltq_spi_internal_cs_activate; cstate->cs_deactivate = ltq_spi_internal_cs_deactivate; } return 0; } static void ltq_spi_cleanup(struct spi_device *spi) { struct ltq_spi_controller_data *cdata = spi->controller_data; struct ltq_spi_controller_state *cstate = spi->controller_state; unsigned gpio; if (cdata && cdata->gpio) gpio = cdata->gpio; else gpio = ltq_is_ase() ? ltq_spi_cs_ase[spi->chip_select].gpio : ltq_spi_cs[spi->chip_select].gpio; gpio_free(gpio); kfree(cstate); } static void ltq_spi_txfifo_write(struct ltq_spi *hw) { u32 fstat, data; u16 fifo_space; /* Determine how much FIFOs are free for TX data */ fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT); fifo_space = hw->txfs - ((fstat >> LTQ_SPI_FSTAT_TXFFL_SHIFT) & LTQ_SPI_FSTAT_TXFFL_MASK); if (!fifo_space) return; while (hw->tx_cnt < hw->len && fifo_space) { data = hw->get_tx(hw); ltq_spi_reg_write(hw, data, LTQ_SPI_TB); fifo_space--; } } static void ltq_spi_rxfifo_read(struct ltq_spi *hw) { u32 fstat, data, *rx32; u16 fifo_fill; u8 rxbv, shift, *rx8; /* Determine how much FIFOs are filled with RX data */ fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT); fifo_fill = ((fstat >> LTQ_SPI_FSTAT_RXFFL_SHIFT) & LTQ_SPI_FSTAT_RXFFL_MASK); if (!fifo_fill) return; /* * The 32 bit FIFO is always used completely independent from the * bits_per_word value. Thus four bytes have to be read at once * per FIFO. */ rx32 = (u32 *) hw->rx; while (hw->len - hw->rx_cnt >= 4 && fifo_fill) { *rx32++ = ltq_spi_reg_read(hw, LTQ_SPI_RB); hw->rx_cnt += 4; hw->rx += 4; fifo_fill--; } /* * If there are remaining bytes, read byte count from STAT.RXBV * register and read the data byte-wise. */ while (fifo_fill && hw->rx_cnt < hw->len) { rxbv = (ltq_spi_reg_read(hw, LTQ_SPI_STAT) >> LTQ_SPI_STAT_RXBV_SHIFT) & LTQ_SPI_STAT_RXBV_MASK; data = ltq_spi_reg_read(hw, LTQ_SPI_RB); shift = (rxbv - 1) * 8; rx8 = hw->rx; while (rxbv) { *rx8++ = (data >> shift) & 0xFF; rxbv--; shift -= 8; hw->rx_cnt++; hw->rx++; } fifo_fill--; } } static void ltq_spi_rxreq_set(struct ltq_spi *hw) { u32 rxreq, rxreq_max, rxtodo; rxtodo = ltq_spi_reg_read(hw, LTQ_SPI_RXCNT) & LTQ_SPI_RXCNT_TODO_MASK; /* * In RX-only mode the serial clock is activated only after writing * the expected amount of RX bytes into RXREQ register. * To avoid receive overflows at high clocks it is better to request * only the amount of bytes that fits into all FIFOs. This value * depends on the FIFO size implemented in hardware. */ rxreq = hw->len - hw->rx_cnt; rxreq_max = hw->rxfs << 2; rxreq = min(rxreq_max, rxreq); if (!rxtodo && rxreq) ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ); } static inline void ltq_spi_complete(struct ltq_spi *hw) { complete(&hw->done); } irqreturn_t ltq_spi_tx_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; int completed = 0; spin_lock_irqsave(&hw->lock, flags); if (hw->tx_cnt < hw->len) ltq_spi_txfifo_write(hw); if (hw->tx_cnt == hw->len) completed = 1; spin_unlock_irqrestore(&hw->lock, flags); if (completed) ltq_spi_complete(hw); return IRQ_HANDLED; } irqreturn_t ltq_spi_rx_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; int completed = 0; spin_lock_irqsave(&hw->lock, flags); if (hw->rx_cnt < hw->len) { ltq_spi_rxfifo_read(hw); if (hw->tx && hw->tx_cnt < hw->len) ltq_spi_txfifo_write(hw); } if (hw->rx_cnt == hw->len) completed = 1; else if (!hw->tx) ltq_spi_rxreq_set(hw); spin_unlock_irqrestore(&hw->lock, flags); if (completed) ltq_spi_complete(hw); return IRQ_HANDLED; } irqreturn_t ltq_spi_err_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; spin_lock_irqsave(&hw->lock, flags); /* Disable all interrupts */ ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN); /* Clear all error flags */ ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE); /* Flush FIFOs */ ltq_spi_reg_setbit(hw, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON); ltq_spi_reg_setbit(hw, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON); hw->status = -EIO; spin_unlock_irqrestore(&hw->lock, flags); ltq_spi_complete(hw); return IRQ_HANDLED; } static int ltq_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 irq_flags = 0; hw->tx = t->tx_buf; hw->rx = t->rx_buf; hw->len = t->len; hw->tx_cnt = 0; hw->rx_cnt = 0; hw->status = 0; INIT_COMPLETION(hw->done); ltq_spi_xmit_set(hw, t); /* Enable error interrupts */ ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN); if (hw->tx) { /* Initially fill TX FIFO with as much data as possible */ ltq_spi_txfifo_write(hw); irq_flags |= LTQ_SPI_IRNEN_T; /* Always enable RX interrupt in Full Duplex mode */ if (hw->rx) irq_flags |= LTQ_SPI_IRNEN_R; } else if (hw->rx) { /* Start RX clock */ ltq_spi_rxreq_set(hw); /* Enable RX interrupt to receive data from RX FIFOs */ irq_flags |= LTQ_SPI_IRNEN_R; } /* Enable TX or RX interrupts */ ltq_spi_reg_setbit(hw, irq_flags, LTQ_SPI_IRNEN); wait_for_completion_interruptible(&hw->done); /* Disable all interrupts */ ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN); /* * Return length of current transfer for bitbang utility code if * no errors occured during transmission. */ if (!hw->status) hw->status = hw->len; return hw->status; } static const struct ltq_spi_irq_map ltq_spi_irqs[] = { { "spi_tx", ltq_spi_tx_irq }, { "spi_rx", ltq_spi_rx_irq }, { "spi_err", ltq_spi_err_irq }, }; static int __devinit ltq_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct resource *r; struct ltq_spi *hw; struct ltq_spi_platform_data *pdata = pdev->dev.platform_data; int ret, i; u32 data, id; master = spi_alloc_master(&pdev->dev, sizeof(struct ltq_spi)); if (!master) { dev_err(&pdev->dev, "spi_alloc_master\n"); ret = -ENOMEM; goto err; } hw = spi_master_get_devdata(master); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&pdev->dev, "platform_get_resource\n"); ret = -ENOENT; goto err_master; } r = devm_request_mem_region(&pdev->dev, r->start, resource_size(r), pdev->name); if (!r) { dev_err(&pdev->dev, "devm_request_mem_region\n"); ret = -ENXIO; goto err_master; } hw->base = devm_ioremap_nocache(&pdev->dev, r->start, resource_size(r)); if (!hw->base) { dev_err(&pdev->dev, "devm_ioremap_nocache\n"); ret = -ENXIO; goto err_master; } hw->fpiclk = clk_get_fpi(); if (IS_ERR(hw->fpiclk)) { dev_err(&pdev->dev, "fpi clk\n"); ret = PTR_ERR(hw->fpiclk); goto err_master; } hw->spiclk = clk_get(&pdev->dev, NULL); if (IS_ERR(hw->spiclk)) { dev_err(&pdev->dev, "spi clk\n"); ret = PTR_ERR(hw->spiclk); goto err_master; } memset(hw->irq, 0, sizeof(hw->irq)); for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) { ret = platform_get_irq_byname(pdev, ltq_spi_irqs[i].name); if (0 > ret) { dev_err(&pdev->dev, "platform_get_irq_byname\n"); goto err_irq; } hw->irq[i] = ret; ret = request_irq(hw->irq[i], ltq_spi_irqs[i].handler, 0, ltq_spi_irqs[i].name, hw); if (ret) { dev_err(&pdev->dev, "request_irq\n"); goto err_irq; } } hw->bitbang.master = spi_master_get(master); hw->bitbang.chipselect = ltq_spi_chipselect; hw->bitbang.setup_transfer = ltq_spi_setup_transfer; hw->bitbang.txrx_bufs = ltq_spi_txrx_bufs; master->bus_num = pdev->id; master->num_chipselect = pdata->num_chipselect; master->setup = ltq_spi_setup; master->cleanup = ltq_spi_cleanup; hw->dev = &pdev->dev; init_completion(&hw->done); spin_lock_init(&hw->lock); /* Set GPIO alternate functions to SPI */ ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_DI, 2, 0, "spi-di"); ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_DO, 2, 1, "spi-do"); ltq_gpio_request(&pdev->dev, LTQ_SPI_GPIO_CLK, 2, 1, "spi-clk"); ltq_spi_hw_enable(hw); /* Read module capabilities */ id = ltq_spi_reg_read(hw, LTQ_SPI_ID); hw->txfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK; hw->rxfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK; hw->dma_support = (id & LTQ_SPI_ID_CFG) ? 1 : 0; ltq_spi_config_mode_set(hw); /* Enable error checking, disable TX/RX, set idle value high */ data = LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN | LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF | LTQ_SPI_CON_IDLE; ltq_spi_reg_write(hw, data, LTQ_SPI_CON); /* Enable master mode and clear error flags */ ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETMS | LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE); /* Reset GPIO/CS registers */ ltq_spi_reg_write(hw, 0x0, LTQ_SPI_GPOCON); ltq_spi_reg_write(hw, 0xFF00, LTQ_SPI_FGPO); /* Enable and flush FIFOs */ ltq_spi_reset_fifos(hw); ret = spi_bitbang_start(&hw->bitbang); if (ret) { dev_err(&pdev->dev, "spi_bitbang_start\n"); goto err_bitbang; } platform_set_drvdata(pdev, hw); pr_info("Lantiq SoC SPI controller rev %u (TXFS %u, RXFS %u, DMA %u)\n", id & LTQ_SPI_ID_REV_MASK, hw->txfs, hw->rxfs, hw->dma_support); return 0; err_bitbang: ltq_spi_hw_disable(hw); err_irq: clk_put(hw->fpiclk); for (; i > 0; i--) free_irq(hw->irq[i], hw); err_master: spi_master_put(master); err: return ret; } static int __devexit ltq_spi_remove(struct platform_device *pdev) { struct ltq_spi *hw = platform_get_drvdata(pdev); int ret, i; ret = spi_bitbang_stop(&hw->bitbang); if (ret) return ret; platform_set_drvdata(pdev, NULL); ltq_spi_config_mode_set(hw); ltq_spi_hw_disable(hw); for (i = 0; i < ARRAY_SIZE(hw->irq); i++) if (0 < hw->irq[i]) free_irq(hw->irq[i], hw); gpio_free(LTQ_SPI_GPIO_DI); gpio_free(LTQ_SPI_GPIO_DO); gpio_free(LTQ_SPI_GPIO_CLK); clk_put(hw->fpiclk); spi_master_put(hw->bitbang.master); return 0; } static struct platform_driver ltq_spi_driver = { .probe = ltq_spi_probe, .remove = __devexit_p(ltq_spi_remove), .driver = { .name = "ltq_spi", .owner = THIS_MODULE, }, }; module_platform_driver(ltq_spi_driver); MODULE_DESCRIPTION("Lantiq SoC SPI controller driver"); MODULE_AUTHOR("Daniel Schwierzeck "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:ltq-spi");