/* This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Copyright (C) 2018 John Crispin */ #include "mtk_offload.h" #define INVALID 0 #define UNBIND 1 #define BIND 2 #define FIN 3 #define IPV4_HNAPT 0 #define IPV4_HNAT 1 static u32 mtk_flow_hash_v4(struct flow_offload_tuple *tuple) { u32 ports = ntohs(tuple->src_port) << 16 | ntohs(tuple->dst_port); u32 src = ntohl(tuple->dst_v4.s_addr); u32 dst = ntohl(tuple->src_v4.s_addr); u32 hash = (ports & src) | ((~ports) & dst); u32 hash_23_0 = hash & 0xffffff; u32 hash_31_24 = hash & 0xff000000; hash = ports ^ src ^ dst ^ ((hash_23_0 << 8) | (hash_31_24 >> 24)); hash = ((hash & 0xffff0000) >> 16 ) ^ (hash & 0xfffff); hash &= 0x7ff; hash *= 2;; return hash; } static int mtk_foe_prepare_v4(struct mtk_foe_entry *entry, struct flow_offload_tuple *tuple, struct flow_offload_tuple *dest_tuple, struct flow_offload_hw_path *src, struct flow_offload_hw_path *dest) { int is_mcast = !!is_multicast_ether_addr(dest->eth_dest); if (tuple->l4proto == IPPROTO_UDP) entry->ipv4_hnapt.bfib1.udp = 1; entry->ipv4_hnapt.etype = htons(ETH_P_IP); entry->ipv4_hnapt.bfib1.pkt_type = IPV4_HNAPT; entry->ipv4_hnapt.iblk2.fqos = 0; entry->ipv4_hnapt.bfib1.ttl = 1; entry->ipv4_hnapt.bfib1.cah = 1; entry->ipv4_hnapt.bfib1.ka = 1; entry->ipv4_hnapt.iblk2.mcast = is_mcast; entry->ipv4_hnapt.iblk2.dscp = 0; entry->ipv4_hnapt.iblk2.port_mg = 0x3f; entry->ipv4_hnapt.iblk2.port_ag = 0x1f; #ifdef CONFIG_NET_RALINK_HW_QOS entry->ipv4_hnapt.iblk2.qid = 1; entry->ipv4_hnapt.iblk2.fqos = 1; #endif #ifdef CONFIG_RALINK entry->ipv4_hnapt.iblk2.dp = 1; if ((dest->flags & FLOW_OFFLOAD_PATH_VLAN) && (dest->vlan_id > 1)) entry->ipv4_hnapt.iblk2.qid += 8; #else entry->ipv4_hnapt.iblk2.dp = (dest->dev->name[3] - '0') + 1; #endif entry->ipv4_hnapt.sip = ntohl(tuple->src_v4.s_addr); entry->ipv4_hnapt.dip = ntohl(tuple->dst_v4.s_addr); entry->ipv4_hnapt.sport = ntohs(tuple->src_port); entry->ipv4_hnapt.dport = ntohs(tuple->dst_port); entry->ipv4_hnapt.new_sip = ntohl(dest_tuple->dst_v4.s_addr); entry->ipv4_hnapt.new_dip = ntohl(dest_tuple->src_v4.s_addr); entry->ipv4_hnapt.new_sport = ntohs(dest_tuple->dst_port); entry->ipv4_hnapt.new_dport = ntohs(dest_tuple->src_port); entry->bfib1.state = BIND; if (dest->flags & FLOW_OFFLOAD_PATH_PPPOE) { entry->bfib1.psn = 1; entry->ipv4_hnapt.etype = htons(ETH_P_PPP_SES); entry->ipv4_hnapt.pppoe_id = dest->pppoe_sid; } if (dest->flags & FLOW_OFFLOAD_PATH_VLAN) { entry->ipv4_hnapt.vlan1 = dest->vlan_id; entry->bfib1.vlan_layer = 1; switch (dest->vlan_proto) { case htons(ETH_P_8021Q): entry->ipv4_hnapt.bfib1.vpm = 1; break; case htons(ETH_P_8021AD): entry->ipv4_hnapt.bfib1.vpm = 2; break; default: return -EINVAL; } } return 0; } static void mtk_foe_set_mac(struct mtk_foe_entry *entry, u8 *smac, u8 *dmac) { entry->ipv4_hnapt.dmac_hi = swab32(*((u32*) dmac)); entry->ipv4_hnapt.dmac_lo = swab16(*((u16*) &dmac[4])); entry->ipv4_hnapt.smac_hi = swab32(*((u32*) smac)); entry->ipv4_hnapt.smac_lo = swab16(*((u16*) &smac[4])); } static int mtk_check_entry_available(struct mtk_eth *eth, u32 hash) { struct mtk_foe_entry entry = ((struct mtk_foe_entry *)eth->foe_table)[hash]; return (entry.bfib1.state == BIND)? 0:1; } static void mtk_foe_write(struct mtk_eth *eth, u32 hash, struct mtk_foe_entry *entry) { struct mtk_foe_entry *table = (struct mtk_foe_entry *)eth->foe_table; memcpy(&table[hash], entry, sizeof(*entry)); } int mtk_flow_offload(struct mtk_eth *eth, enum flow_offload_type type, struct flow_offload *flow, struct flow_offload_hw_path *src, struct flow_offload_hw_path *dest) { struct flow_offload_tuple *otuple = &flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple; struct flow_offload_tuple *rtuple = &flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple; u32 time_stamp = mtk_r32(eth, 0x0010) & (0x7fff); u32 ohash, rhash; struct mtk_foe_entry orig = { .bfib1.time_stamp = time_stamp, .bfib1.psn = 0, }; struct mtk_foe_entry reply = { .bfib1.time_stamp = time_stamp, .bfib1.psn = 0, }; if (otuple->l4proto != IPPROTO_TCP && otuple->l4proto != IPPROTO_UDP) return -EINVAL; if (type == FLOW_OFFLOAD_DEL) { flow = NULL; synchronize_rcu(); return 0; } switch (otuple->l3proto) { case AF_INET: if (mtk_foe_prepare_v4(&orig, otuple, rtuple, src, dest) || mtk_foe_prepare_v4(&reply, rtuple, otuple, dest, src)) return -EINVAL; ohash = mtk_flow_hash_v4(otuple); rhash = mtk_flow_hash_v4(rtuple); break; case AF_INET6: return -EINVAL; default: return -EINVAL; } /* Two-way hash: when hash collision occurs, the hash value will be shifted to the next position. */ if (!mtk_check_entry_available(eth, ohash)){ if (!mtk_check_entry_available(eth, ohash + 1)) return -EINVAL; ohash += 1; } if (!mtk_check_entry_available(eth, rhash)){ if (!mtk_check_entry_available(eth, rhash + 1)) return -EINVAL; rhash += 1; } mtk_foe_set_mac(&orig, dest->eth_src, dest->eth_dest); mtk_foe_set_mac(&reply, src->eth_src, src->eth_dest); mtk_foe_write(eth, ohash, &orig); mtk_foe_write(eth, rhash, &reply); rcu_assign_pointer(eth->foe_flow_table[ohash], flow); rcu_assign_pointer(eth->foe_flow_table[rhash], flow); return 0; } #ifdef CONFIG_NET_RALINK_HW_QOS #define QDMA_TX_SCH_TX 0x1a14 static void mtk_ppe_scheduler(struct mtk_eth *eth, int id, u32 rate) { int exp = 0, shift = 0; u32 reg = mtk_r32(eth, QDMA_TX_SCH_TX); u32 val = 0; if (rate) val = BIT(11); while (rate > 127) { rate /= 10; exp++; } val |= (rate & 0x7f) << 4; val |= exp & 0xf; if (id) shift = 16; reg &= ~(0xffff << shift); reg |= val << shift; mtk_w32(eth, val, QDMA_TX_SCH_TX); } #define QTX_CFG(x) (0x1800 + (x * 0x10)) #define QTX_SCH(x) (0x1804 + (x * 0x10)) static void mtk_ppe_queue(struct mtk_eth *eth, int id, int sched, int weight, int resv, u32 min_rate, u32 max_rate) { int max_exp = 0, min_exp = 0; u32 reg; if (id >= 16) return; reg = mtk_r32(eth, QTX_SCH(id)); reg &= 0x70000000; if (sched) reg |= BIT(31); if (min_rate) reg |= BIT(27); if (max_rate) reg |= BIT(11); while (max_rate > 127) { max_rate /= 10; max_exp++; } while (min_rate > 127) { min_rate /= 10; min_exp++; } reg |= (min_rate & 0x7f) << 20; reg |= (min_exp & 0xf) << 16; reg |= (weight & 0xf) << 12; reg |= (max_rate & 0x7f) << 4; reg |= max_exp & 0xf; mtk_w32(eth, reg, QTX_SCH(id)); resv &= 0xff; reg = mtk_r32(eth, QTX_CFG(id)); reg &= 0xffff0000; reg |= (resv << 8) | resv; mtk_w32(eth, reg, QTX_CFG(id)); } #endif static int mtk_init_foe_table(struct mtk_eth *eth) { if (eth->foe_table) return 0; eth->foe_flow_table = devm_kcalloc(eth->dev, MTK_PPE_ENTRY_CNT, sizeof(*eth->foe_flow_table), GFP_KERNEL); if (!eth->foe_flow_table) return -EINVAL; /* map the FOE table */ eth->foe_table = dmam_alloc_coherent(eth->dev, MTK_PPE_TBL_SZ, ð->foe_table_phys, GFP_KERNEL); if (!eth->foe_table) { dev_err(eth->dev, "failed to allocate foe table\n"); kfree(eth->foe_flow_table); return -ENOMEM; } return 0; } static int mtk_ppe_start(struct mtk_eth *eth) { int ret; ret = mtk_init_foe_table(eth); if (ret) return ret; /* tell the PPE about the tables base address */ mtk_w32(eth, eth->foe_table_phys, MTK_REG_PPE_TB_BASE); /* flush the table */ memset(eth->foe_table, 0, MTK_PPE_TBL_SZ); /* setup hashing */ mtk_m32(eth, MTK_PPE_TB_CFG_HASH_MODE_MASK | MTK_PPE_TB_CFG_TBL_SZ_MASK, MTK_PPE_TB_CFG_HASH_MODE1 | MTK_PPE_TB_CFG_TBL_SZ_4K, MTK_REG_PPE_TB_CFG); /* set the default hashing seed */ mtk_w32(eth, MTK_PPE_HASH_SEED, MTK_REG_PPE_HASH_SEED); /* each foe entry is 64bytes and is setup by cpu forwarding*/ mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE | MTK_PPE_TB_CFG_ENTRY_SZ_MASK | MTK_PPE_TB_CFG_SMA_MASK, MTK_PPE_TB_CFG_ENTRY_SZ_64B | MTK_PPE_TB_CFG_SMA_FWD_CPU, MTK_REG_PPE_TB_CFG); /* set ip proto */ mtk_w32(eth, 0xFFFFFFFF, MTK_REG_PPE_IP_PROT_CHK); /* setup caching */ mtk_m32(eth, 0, MTK_PPE_CAH_CTRL_X_MODE, MTK_REG_PPE_CAH_CTRL); mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE, MTK_PPE_CAH_CTRL_EN, MTK_REG_PPE_CAH_CTRL); /* enable FOE */ mtk_m32(eth, 0, MTK_PPE_FLOW_CFG_IPV4_NAT_FRAG_EN | MTK_PPE_FLOW_CFG_IPV4_NAPT_EN | MTK_PPE_FLOW_CFG_IPV4_NAT_EN | MTK_PPE_FLOW_CFG_IPV4_GREK_EN, MTK_REG_PPE_FLOW_CFG); /* setup flow entry un/bind aging */ mtk_m32(eth, 0, MTK_PPE_TB_CFG_UNBD_AGE | MTK_PPE_TB_CFG_NTU_AGE | MTK_PPE_TB_CFG_FIN_AGE | MTK_PPE_TB_CFG_UDP_AGE | MTK_PPE_TB_CFG_TCP_AGE, MTK_REG_PPE_TB_CFG); mtk_m32(eth, MTK_PPE_UNB_AGE_MNP_MASK | MTK_PPE_UNB_AGE_DLTA_MASK, MTK_PPE_UNB_AGE_MNP | MTK_PPE_UNB_AGE_DLTA, MTK_REG_PPE_UNB_AGE); mtk_m32(eth, MTK_PPE_BND_AGE0_NTU_DLTA_MASK | MTK_PPE_BND_AGE0_UDP_DLTA_MASK, MTK_PPE_BND_AGE0_NTU_DLTA | MTK_PPE_BND_AGE0_UDP_DLTA, MTK_REG_PPE_BND_AGE0); mtk_m32(eth, MTK_PPE_BND_AGE1_FIN_DLTA_MASK | MTK_PPE_BND_AGE1_TCP_DLTA_MASK, MTK_PPE_BND_AGE1_FIN_DLTA | MTK_PPE_BND_AGE1_TCP_DLTA, MTK_REG_PPE_BND_AGE1); /* setup flow entry keep alive */ mtk_m32(eth, MTK_PPE_TB_CFG_KA_MASK, MTK_PPE_TB_CFG_KA, MTK_REG_PPE_TB_CFG); mtk_w32(eth, MTK_PPE_KA_UDP | MTK_PPE_KA_TCP | MTK_PPE_KA_T, MTK_REG_PPE_KA); /* setup flow entry rate limit */ mtk_w32(eth, (0x3fff << 16) | 0x3fff, MTK_REG_PPE_BIND_LMT_0); mtk_w32(eth, MTK_PPE_NTU_KA | 0x3fff, MTK_REG_PPE_BIND_LMT_1); mtk_m32(eth, MTK_PPE_BNDR_RATE_MASK, 1, MTK_REG_PPE_BNDR); /* enable the PPE */ mtk_m32(eth, 0, MTK_PPE_GLO_CFG_EN, MTK_REG_PPE_GLO_CFG); #ifdef CONFIG_RALINK /* set the default forwarding port to QDMA */ mtk_w32(eth, 0x0, MTK_REG_PPE_DFT_CPORT); #else /* set the default forwarding port to QDMA */ mtk_w32(eth, 0x55555555, MTK_REG_PPE_DFT_CPORT); #endif /* allow packets with TTL=0 */ mtk_m32(eth, MTK_PPE_GLO_CFG_TTL0_DROP, 0, MTK_REG_PPE_GLO_CFG); /* send all traffic from gmac to the ppe */ mtk_m32(eth, 0xffff, 0x4444, MTK_GDMA_FWD_CFG(0)); mtk_m32(eth, 0xffff, 0x4444, MTK_GDMA_FWD_CFG(1)); dev_info(eth->dev, "PPE started\n"); #ifdef CONFIG_NET_RALINK_HW_QOS mtk_ppe_scheduler(eth, 0, 500000); mtk_ppe_scheduler(eth, 1, 500000); mtk_ppe_queue(eth, 0, 0, 7, 32, 250000, 0); mtk_ppe_queue(eth, 1, 0, 7, 32, 250000, 0); mtk_ppe_queue(eth, 8, 1, 7, 32, 250000, 0); mtk_ppe_queue(eth, 9, 1, 7, 32, 250000, 0); #endif return 0; } static int mtk_ppe_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; u32 r = 0; while (1) { r = mtk_r32(eth, MTK_REG_PPE_GLO_CFG); if (!(r & MTK_PPE_GLO_CFG_BUSY)) return 0; if (time_after(jiffies, t_start + HZ)) break; usleep_range(10, 20); } dev_err(eth->dev, "ppe: table busy timeout - resetting\n"); reset_control_reset(eth->rst_ppe); return -ETIMEDOUT; } static int mtk_ppe_stop(struct mtk_eth *eth) { u32 r1 = 0, r2 = 0; int i; /* discard all traffic while we disable the PPE */ mtk_m32(eth, 0xffff, 0x7777, MTK_GDMA_FWD_CFG(0)); mtk_m32(eth, 0xffff, 0x7777, MTK_GDMA_FWD_CFG(1)); if (mtk_ppe_busy_wait(eth)) return -ETIMEDOUT; /* invalidate all flow table entries */ for (i = 0; i < MTK_PPE_ENTRY_CNT; i++) eth->foe_table[i].bfib1.state = FOE_STATE_INVALID; /* disable caching */ mtk_m32(eth, 0, MTK_PPE_CAH_CTRL_X_MODE, MTK_REG_PPE_CAH_CTRL); mtk_m32(eth, MTK_PPE_CAH_CTRL_X_MODE | MTK_PPE_CAH_CTRL_EN, 0, MTK_REG_PPE_CAH_CTRL); /* flush cache has to be ahead of hnat diable --*/ mtk_m32(eth, MTK_PPE_GLO_CFG_EN, 0, MTK_REG_PPE_GLO_CFG); /* disable FOE */ mtk_m32(eth, MTK_PPE_FLOW_CFG_IPV4_NAT_FRAG_EN | MTK_PPE_FLOW_CFG_IPV4_NAPT_EN | MTK_PPE_FLOW_CFG_IPV4_NAT_EN | MTK_PPE_FLOW_CFG_FUC_FOE | MTK_PPE_FLOW_CFG_FMC_FOE, 0, MTK_REG_PPE_FLOW_CFG); /* disable FOE aging */ mtk_m32(eth, 0, MTK_PPE_TB_CFG_FIN_AGE | MTK_PPE_TB_CFG_UDP_AGE | MTK_PPE_TB_CFG_TCP_AGE | MTK_PPE_TB_CFG_UNBD_AGE | MTK_PPE_TB_CFG_NTU_AGE, MTK_REG_PPE_TB_CFG); r1 = mtk_r32(eth, 0x100); r2 = mtk_r32(eth, 0x10c); dev_info(eth->dev, "0x100 = 0x%x, 0x10c = 0x%x\n", r1, r2); if (((r1 & 0xff00) >> 0x8) >= (r1 & 0xff) || ((r1 & 0xff00) >> 0x8) >= (r2 & 0xff)) { dev_info(eth->dev, "reset pse\n"); mtk_w32(eth, 0x1, 0x4); } /* set the foe entry base address to 0 */ mtk_w32(eth, 0, MTK_REG_PPE_TB_BASE); if (mtk_ppe_busy_wait(eth)) return -ETIMEDOUT; /* send all traffic back to the DMA engine */ #ifdef CONFIG_RALINK mtk_m32(eth, 0xffff, 0x0, MTK_GDMA_FWD_CFG(0)); mtk_m32(eth, 0xffff, 0x0, MTK_GDMA_FWD_CFG(1)); #else mtk_m32(eth, 0xffff, 0x5555, MTK_GDMA_FWD_CFG(0)); mtk_m32(eth, 0xffff, 0x5555, MTK_GDMA_FWD_CFG(1)); #endif return 0; } static void mtk_offload_keepalive(struct fe_priv *eth, unsigned int hash) { struct flow_offload *flow; rcu_read_lock(); flow = rcu_dereference(eth->foe_flow_table[hash]); if (flow) flow->timeout = jiffies + 30 * HZ; rcu_read_unlock(); } int mtk_offload_check_rx(struct fe_priv *eth, struct sk_buff *skb, u32 rxd4) { unsigned int hash; switch (FIELD_GET(MTK_RXD4_CPU_REASON, rxd4)) { case MTK_CPU_REASON_KEEPALIVE_UC_OLD_HDR: case MTK_CPU_REASON_KEEPALIVE_MC_NEW_HDR: case MTK_CPU_REASON_KEEPALIVE_DUP_OLD_HDR: hash = FIELD_GET(MTK_RXD4_FOE_ENTRY, rxd4); mtk_offload_keepalive(eth, hash); return -1; case MTK_CPU_REASON_PACKET_SAMPLING: return -1; default: return 0; } } int mtk_ppe_probe(struct mtk_eth *eth) { int err; err = mtk_ppe_start(eth); if (err) return err; err = mtk_ppe_debugfs_init(eth); if (err) return err; return 0; } void mtk_ppe_remove(struct mtk_eth *eth) { mtk_ppe_stop(eth); }