sunxi: add the actual mmc driver

Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>

SVN-Revision: 39194
v19.07.3_mercusys_ac12_duma
Zoltan Herpai 11 years ago
parent 78936aa875
commit 662e5c224c

@ -0,0 +1,908 @@
/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
* (C) Copyright 2013-2013 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2013 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
* (C) Copyright 2013-2013 Hans de Goede <hdegoede@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clk-private.h>
#include <linux/clk/sunxi.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include "sunxi-mci.h"
static void sunxi_mmc_init_host(struct mmc_host *mmc)
{
u32 rval;
struct sunxi_mmc_host *smc_host = mmc_priv(mmc);
/* reset controller */
rval = mci_readl(smc_host, REG_GCTRL) | SDXC_HWReset;
mci_writel(smc_host, REG_GCTRL, rval);
mci_writel(smc_host, REG_FTRGL, 0x20070008);
mci_writel(smc_host, REG_TMOUT, 0xffffffff);
mci_writel(smc_host, REG_IMASK, smc_host->sdio_imask);
mci_writel(smc_host, REG_RINTR, 0xffffffff);
mci_writel(smc_host, REG_DBGC, 0xdeb);
mci_writel(smc_host, REG_FUNS, 0xceaa0000);
mci_writel(smc_host, REG_DLBA, smc_host->sg_dma);
rval = mci_readl(smc_host, REG_GCTRL)|SDXC_INTEnb;
rval &= ~SDXC_AccessDoneDirect;
mci_writel(smc_host, REG_GCTRL, rval);
}
static void sunxi_mmc_exit_host(struct sunxi_mmc_host *smc_host)
{
mci_writel(smc_host, REG_GCTRL, SDXC_HWReset);
}
/* /\* UHS-I Operation Modes */
/* * DS 25MHz 12.5MB/s 3.3V */
/* * HS 50MHz 25MB/s 3.3V */
/* * SDR12 25MHz 12.5MB/s 1.8V */
/* * SDR25 50MHz 25MB/s 1.8V */
/* * SDR50 100MHz 50MB/s 1.8V */
/* * SDR104 208MHz 104MB/s 1.8V */
/* * DDR50 50MHz 50MB/s 1.8V */
/* * MMC Operation Modes */
/* * DS 26MHz 26MB/s 3/1.8/1.2V */
/* * HS 52MHz 52MB/s 3/1.8/1.2V */
/* * HSDDR 52MHz 104MB/s 3/1.8/1.2V */
/* * HS200 200MHz 200MB/s 1.8/1.2V */
/* * */
/* * Spec. Timing */
/* * SD3.0 */
/* * Fcclk Tcclk Fsclk Tsclk Tis Tih odly RTis RTih */
/* * 400K 2.5us 24M 41ns 5ns 5ns 1 2209ns 41ns */
/* * 25M 40ns 600M 1.67ns 5ns 5ns 3 14.99ns 5.01ns */
/* * 50M 20ns 600M 1.67ns 6ns 2ns 3 14.99ns 5.01ns */
/* * 50MDDR 20ns 600M 1.67ns 6ns 0.8ns 2 6.67ns 3.33ns */
/* * 104M 9.6ns 600M 1.67ns 3ns 0.8ns 1 7.93ns 1.67ns */
/* * 208M 4.8ns 600M 1.67ns 1.4ns 0.8ns 1 3.33ns 1.67ns */
/* * 25M 40ns 300M 3.33ns 5ns 5ns 2 13.34ns 6.66ns */
/* * 50M 20ns 300M 3.33ns 6ns 2ns 2 13.34ns 6.66ns */
/* * 50MDDR 20ns 300M 3.33ns 6ns 0.8ns 1 6.67ns 3.33ns */
/* * 104M 9.6ns 300M 3.33ns 3ns 0.8ns 0 7.93ns 1.67ns */
/* * 208M 4.8ns 300M 3.33ns 1.4ns 0.8ns 0 3.13ns 1.67ns */
/* * eMMC4.5 */
/* * 400K 2.5us 24M 41ns 3ns 3ns 1 2209ns 41ns */
/* * 25M 40ns 600M 1.67ns 3ns 3ns 3 14.99ns 5.01ns */
/* * 50M 20ns 600M 1.67ns 3ns 3ns 3 14.99ns 5.01ns */
/* * 50MDDR 20ns 600M 1.67ns 2.5ns 2.5ns 2 6.67ns 3.33ns */
/* * 200M 5ns 600M 1.67ns 1.4ns 0.8ns 1 3.33ns 1.67ns */
/* *\/ */
static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
struct sunxi_idma_des *pdes_pa = (struct sunxi_idma_des *)host->sg_dma;
int i, max_len = (1 << host->idma_des_size_bits);
for (i = 0; i < data->sg_len; i++) {
pdes[i].config = SDXC_IDMAC_DES0_CH | SDXC_IDMAC_DES0_OWN |
SDXC_IDMAC_DES0_DIC;
if (data->sg[i].length == max_len)
pdes[i].buf_size = 0; /* 0 == max_len */
else
pdes[i].buf_size = data->sg[i].length;
pdes[i].buf_addr_ptr1 = sg_dma_address(&data->sg[i]);
pdes[i].buf_addr_ptr2 = (u32)&pdes_pa[i + 1];
}
pdes[0].config |= SDXC_IDMAC_DES0_FD;
pdes[i - 1].config = SDXC_IDMAC_DES0_OWN | SDXC_IDMAC_DES0_LD;
wmb(); /* Ensure idma_des hit main mem before we start the idmac */
}
static enum dma_data_direction sunxi_mmc_get_dma_dir(struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static int sunxi_mmc_prepare_dma(struct sunxi_mmc_host *smc_host,
struct mmc_data *data)
{
u32 dma_len;
u32 i;
u32 temp;
struct scatterlist *sg;
dma_len = dma_map_sg(mmc_dev(smc_host->mmc), data->sg, data->sg_len,
sunxi_mmc_get_dma_dir(data));
if (dma_len == 0) {
dev_err(mmc_dev(smc_host->mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3) {
dev_err(mmc_dev(smc_host->mmc),
"unaligned scatterlist: os %x length %d\n",
sg->offset, sg->length);
return -EINVAL;
}
}
sunxi_mmc_init_idma_des(smc_host, data);
temp = mci_readl(smc_host, REG_GCTRL);
temp |= SDXC_DMAEnb;
mci_writel(smc_host, REG_GCTRL, temp);
temp |= SDXC_DMAReset;
mci_writel(smc_host, REG_GCTRL, temp);
mci_writel(smc_host, REG_DMAC, SDXC_IDMACSoftRST);
if (!(data->flags & MMC_DATA_WRITE))
mci_writel(smc_host, REG_IDIE, SDXC_IDMACReceiveInt);
mci_writel(smc_host, REG_DMAC, SDXC_IDMACFixBurst | SDXC_IDMACIDMAOn);
return 0;
}
static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
struct mmc_request *req)
{
u32 cmd_val = SDXC_Start | SDXC_RspExp | SDXC_StopAbortCMD
| SDXC_CheckRspCRC | MMC_STOP_TRANSMISSION;
u32 ri = 0;
unsigned long expire = jiffies + msecs_to_jiffies(1000);
mci_writel(host, REG_CARG, 0);
mci_writel(host, REG_CMDR, cmd_val);
do {
ri = mci_readl(host, REG_RINTR);
} while (!(ri & (SDXC_CmdDone | SDXC_IntErrBit)) &&
time_before(jiffies, expire));
if (ri & SDXC_IntErrBit) {
dev_err(mmc_dev(host->mmc), "send stop command failed\n");
if (req->stop)
req->stop->resp[0] = -ETIMEDOUT;
} else {
if (req->stop)
req->stop->resp[0] = mci_readl(host, REG_RESP0);
}
mci_writel(host, REG_RINTR, 0xffff);
}
static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *smc_host)
{
struct mmc_command *cmd = smc_host->mrq->cmd;
struct mmc_data *data = smc_host->mrq->data;
/* For some cmds timeout is normal with sd/mmc cards */
if ((smc_host->int_sum & SDXC_IntErrBit) == SDXC_RespTimeout &&
(cmd->opcode == 5 || cmd->opcode == 52))
return;
dev_err(mmc_dev(smc_host->mmc),
"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
smc_host->mmc->index, cmd->opcode,
data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
smc_host->int_sum & SDXC_RespErr ? " RE" : "",
smc_host->int_sum & SDXC_RespCRCErr ? " RCE" : "",
smc_host->int_sum & SDXC_DataCRCErr ? " DCE" : "",
smc_host->int_sum & SDXC_RespTimeout ? " RTO" : "",
smc_host->int_sum & SDXC_DataTimeout ? " DTO" : "",
smc_host->int_sum & SDXC_FIFORunErr ? " FE" : "",
smc_host->int_sum & SDXC_HardWLocked ? " HL" : "",
smc_host->int_sum & SDXC_StartBitErr ? " SBE" : "",
smc_host->int_sum & SDXC_EndBitErr ? " EBE" : ""
);
}
static void sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
{
struct mmc_request *mrq;
unsigned long iflags;
spin_lock_irqsave(&host->lock, iflags);
mrq = host->mrq;
if (!mrq) {
spin_unlock_irqrestore(&host->lock, iflags);
dev_err(mmc_dev(host->mmc), "no request to finalize\n");
return;
}
if (host->int_sum & SDXC_IntErrBit) {
sunxi_mmc_dump_errinfo(host);
mrq->cmd->error = -ETIMEDOUT;
if (mrq->data)
mrq->data->error = -ETIMEDOUT;
if (mrq->stop)
mrq->stop->error = -ETIMEDOUT;
} else {
if (mrq->cmd->flags & MMC_RSP_136) {
mrq->cmd->resp[0] = mci_readl(host, REG_RESP3);
mrq->cmd->resp[1] = mci_readl(host, REG_RESP2);
mrq->cmd->resp[2] = mci_readl(host, REG_RESP1);
mrq->cmd->resp[3] = mci_readl(host, REG_RESP0);
} else {
mrq->cmd->resp[0] = mci_readl(host, REG_RESP0);
}
if (mrq->data)
mrq->data->bytes_xfered =
mrq->data->blocks * mrq->data->blksz;
}
if (mrq->data) {
struct mmc_data *data = mrq->data;
u32 temp;
mci_writel(host, REG_IDST, 0x337);
mci_writel(host, REG_DMAC, 0);
temp = mci_readl(host, REG_GCTRL);
mci_writel(host, REG_GCTRL, temp|SDXC_DMAReset);
temp &= ~SDXC_DMAEnb;
mci_writel(host, REG_GCTRL, temp);
temp |= SDXC_FIFOReset;
mci_writel(host, REG_GCTRL, temp);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
sunxi_mmc_get_dma_dir(data));
}
mci_writel(host, REG_RINTR, 0xffff);
dev_dbg(mmc_dev(host->mmc), "req done, resp %08x %08x %08x %08x\n",
mrq->cmd->resp[0], mrq->cmd->resp[1],
mrq->cmd->resp[2], mrq->cmd->resp[3]);
host->mrq = NULL;
host->int_sum = 0;
host->wait_dma = 0;
spin_unlock_irqrestore(&host->lock, iflags);
if (mrq->data && mrq->data->error) {
dev_err(mmc_dev(host->mmc),
"data error, sending stop command\n");
sunxi_mmc_send_manual_stop(host, mrq);
}
mmc_request_done(host->mmc, mrq);
}
static s32 sunxi_mmc_get_ro(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
int read_only = 0;
if (gpio_is_valid(host->wp_pin)) {
pinctrl_request_gpio(host->wp_pin);
read_only = gpio_get_value(host->wp_pin);
}
return read_only;
}
static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
u32 finalize = 0;
u32 sdio_int = 0;
u32 msk_int;
u32 idma_int;
spin_lock(&host->lock);
idma_int = mci_readl(host, REG_IDST);
msk_int = mci_readl(host, REG_MISTA);
dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
host->mrq, msk_int, idma_int);
if (host->mrq) {
if (idma_int & SDXC_IDMACReceiveInt)
host->wait_dma = 0;
host->int_sum |= msk_int;
/* Wait for CmdDone on RespTimeout before finishing the req */
if ((host->int_sum & SDXC_RespTimeout) &&
!(host->int_sum & SDXC_CmdDone))
mci_writel(host, REG_IMASK,
host->sdio_imask | SDXC_CmdDone);
else if (host->int_sum & SDXC_IntErrBit)
finalize = 1; /* Don't wait for dma on error */
else if (host->int_sum & SDXC_IntDoneBit && !host->wait_dma)
finalize = 1; /* Done */
if (finalize) {
mci_writel(host, REG_IMASK, host->sdio_imask);
mci_writel(host, REG_IDIE, 0);
}
}
if (msk_int & SDXC_SDIOInt)
sdio_int = 1;
mci_writel(host, REG_RINTR, msk_int);
mci_writel(host, REG_IDST, idma_int);
spin_unlock(&host->lock);
if (finalize)
tasklet_schedule(&host->tasklet);
if (sdio_int)
mmc_signal_sdio_irq(host->mmc);
return IRQ_HANDLED;
}
static void sunxi_mmc_tasklet(unsigned long data)
{
struct sunxi_mmc_host *smc_host = (struct sunxi_mmc_host *) data;
sunxi_mmc_finalize_request(smc_host);
}
static void sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
unsigned long expire = jiffies + msecs_to_jiffies(2000);
u32 rval;
rval = mci_readl(host, REG_CLKCR);
rval &= ~(SDXC_CardClkOn | SDXC_LowPowerOn);
if (oclk_en)
rval |= SDXC_CardClkOn;
if (!host->io_flag)
rval |= SDXC_LowPowerOn;
mci_writel(host, REG_CLKCR, rval);
rval = SDXC_Start | SDXC_UPCLKOnly | SDXC_WaitPreOver;
if (host->voltage_switching)
rval |= SDXC_VolSwitch;
mci_writel(host, REG_CMDR, rval);
do {
rval = mci_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_Start));
if (rval & SDXC_Start) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
host->ferror = 1;
}
}
static void sunxi_mmc_set_clk_dly(struct sunxi_mmc_host *smc_host,
u32 oclk_dly, u32 sclk_dly)
{
unsigned long iflags;
struct clk_hw *hw = __clk_get_hw(smc_host->clk_mod);
spin_lock_irqsave(&smc_host->lock, iflags);
clk_sunxi_mmc_phase_control(hw, sclk_dly, oclk_dly);
spin_unlock_irqrestore(&smc_host->lock, iflags);
}
struct sunxi_mmc_clk_dly mmc_clk_dly[MMC_CLK_MOD_NUM] = {
{ MMC_CLK_400K, 0, 7 },
{ MMC_CLK_25M, 0, 5 },
{ MMC_CLK_50M, 3, 5 },
{ MMC_CLK_50MDDR, 2, 4 },
{ MMC_CLK_50MDDR_8BIT, 2, 4 },
{ MMC_CLK_100M, 1, 4 },
{ MMC_CLK_200M, 1, 4 },
};
static void sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *smc_host,
unsigned int rate)
{
u32 newrate;
u32 src_clk;
u32 oclk_dly;
u32 sclk_dly;
u32 temp;
struct sunxi_mmc_clk_dly *dly = NULL;
newrate = clk_round_rate(smc_host->clk_mod, rate);
if (smc_host->clk_mod_rate == newrate) {
dev_dbg(mmc_dev(smc_host->mmc), "clk already %d, rounded %d\n",
rate, newrate);
return;
}
dev_dbg(mmc_dev(smc_host->mmc), "setting clk to %d, rounded %d\n",
rate, newrate);
/* setting clock rate */
clk_disable(smc_host->clk_mod);
clk_set_rate(smc_host->clk_mod, newrate);
clk_enable(smc_host->clk_mod);
smc_host->clk_mod_rate = newrate = clk_get_rate(smc_host->clk_mod);
dev_dbg(mmc_dev(smc_host->mmc), "clk is now %d\n", newrate);
sunxi_mmc_oclk_onoff(smc_host, 0);
/* clear internal divider */
temp = mci_readl(smc_host, REG_CLKCR);
temp &= ~0xff;
mci_writel(smc_host, REG_CLKCR, temp);
/* determine delays */
if (rate <= 400000) {
dly = &mmc_clk_dly[MMC_CLK_400K];
} else if (rate <= 25000000) {
dly = &mmc_clk_dly[MMC_CLK_25M];
} else if (rate <= 50000000) {
if (smc_host->ddr) {
if (smc_host->bus_width == 8)
dly = &mmc_clk_dly[MMC_CLK_50MDDR_8BIT];
else
dly = &mmc_clk_dly[MMC_CLK_50MDDR];
} else {
dly = &mmc_clk_dly[MMC_CLK_50M];
}
} else if (rate <= 104000000) {
dly = &mmc_clk_dly[MMC_CLK_100M];
} else if (rate <= 208000000) {
dly = &mmc_clk_dly[MMC_CLK_200M];
} else
dly = &mmc_clk_dly[MMC_CLK_50M];
oclk_dly = dly->oclk_dly;
sclk_dly = dly->sclk_dly;
src_clk = clk_get_rate(clk_get_parent(smc_host->clk_mod));
if (src_clk >= 300000000 && src_clk <= 400000000) {
if (oclk_dly)
oclk_dly--;
if (sclk_dly)
sclk_dly--;
}
sunxi_mmc_set_clk_dly(smc_host, oclk_dly, sclk_dly);
sunxi_mmc_oclk_onoff(smc_host, 1);
/* oclk_onoff sets various irq status bits, clear these */
mci_writel(smc_host, REG_RINTR,
mci_readl(smc_host, REG_RINTR) & ~SDXC_SDIOInt);
}
static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
u32 temp;
s32 err;
/* Set the power state */
switch (ios->power_mode) {
case MMC_POWER_ON:
break;
case MMC_POWER_UP:
if (!IS_ERR(host->vmmc)) {
mmc_regulator_set_ocr(host->mmc, host->vmmc, ios->vdd);
udelay(200);
}
err = clk_prepare_enable(host->clk_ahb);
if (err) {
dev_err(mmc_dev(host->mmc), "AHB clk err %d\n", err);
host->ferror = 1;
return;
}
err = clk_prepare_enable(host->clk_mod);
if (err) {
dev_err(mmc_dev(host->mmc), "MOD clk err %d\n", err);
host->ferror = 1;
return;
}
sunxi_mmc_init_host(mmc);
enable_irq(host->irq);
dev_dbg(mmc_dev(host->mmc), "power on!\n");
host->ferror = 0;
break;
case MMC_POWER_OFF:
dev_dbg(mmc_dev(host->mmc), "power off!\n");
disable_irq(host->irq);
sunxi_mmc_exit_host(host);
clk_disable_unprepare(host->clk_ahb);
clk_disable_unprepare(host->clk_mod);
if (!IS_ERR(host->vmmc))
mmc_regulator_set_ocr(host->mmc, host->vmmc, 0);
host->ferror = 0;
break;
}
/* set bus width */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
mci_writel(host, REG_WIDTH, SDXC_WIDTH1);
host->bus_width = 1;
break;
case MMC_BUS_WIDTH_4:
mci_writel(host, REG_WIDTH, SDXC_WIDTH4);
host->bus_width = 4;
break;
case MMC_BUS_WIDTH_8:
mci_writel(host, REG_WIDTH, SDXC_WIDTH8);
host->bus_width = 8;
break;
}
/* set ddr mode */
temp = mci_readl(host, REG_GCTRL);
if (ios->timing == MMC_TIMING_UHS_DDR50) {
temp |= SDXC_DDR_MODE;
host->ddr = 1;
} else {
temp &= ~SDXC_DDR_MODE;
host->ddr = 0;
}
mci_writel(host, REG_GCTRL, temp);
/* set up clock */
if (ios->clock && ios->power_mode) {
dev_dbg(mmc_dev(host->mmc), "ios->clock: %d\n", ios->clock);
sunxi_mmc_clk_set_rate(host, ios->clock);
usleep_range(50000, 55000);
}
}
static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sunxi_mmc_host *smc_host = mmc_priv(mmc);
unsigned long flags;
u32 imask;
spin_lock_irqsave(&smc_host->lock, flags);
imask = mci_readl(smc_host, REG_IMASK);
if (enable) {
smc_host->sdio_imask = SDXC_SDIOInt;
imask |= SDXC_SDIOInt;
} else {
smc_host->sdio_imask = 0;
imask &= ~SDXC_SDIOInt;
}
mci_writel(smc_host, REG_IMASK, imask);
spin_unlock_irqrestore(&smc_host->lock, flags);
}
static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
{
struct sunxi_mmc_host *smc_host = mmc_priv(mmc);
mci_writel(smc_host, REG_HWRST, 0);
udelay(10);
mci_writel(smc_host, REG_HWRST, 1);
udelay(300);
}
static int sunxi_mmc_card_present(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
switch (host->cd_mode) {
case CARD_DETECT_BY_GPIO_POLL:
return !gpio_get_value(host->cd_pin); /* Signal inverted */
case CARD_ALWAYS_PRESENT:
return 1;
}
return 0; /* Never reached */
}
static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned long iflags;
u32 imask = SDXC_IntErrBit;
u32 cmd_val = SDXC_Start | (cmd->opcode & 0x3f);
u32 byte_cnt = 0;
int ret;
if (!sunxi_mmc_card_present(mmc) || host->ferror) {
dev_dbg(mmc_dev(host->mmc), "no medium present\n");
mrq->cmd->error = -ENOMEDIUM;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
byte_cnt = data->blksz * data->blocks;
mci_writel(host, REG_BLKSZ, data->blksz);
mci_writel(host, REG_BCNTR, byte_cnt);
ret = sunxi_mmc_prepare_dma(host, data);
if (ret < 0) {
dev_err(mmc_dev(host->mmc), "prepare DMA failed\n");
cmd->error = ret;
cmd->data->error = ret;
mmc_request_done(host->mmc, mrq);
return;
}
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
cmd_val |= SDXC_SendInitSeq;
imask |= SDXC_CmdDone;
}
if (cmd->opcode == SD_SWITCH_VOLTAGE) {
cmd_val |= SDXC_VolSwitch;
imask |= SDXC_VolChgDone;
host->voltage_switching = 1;
sunxi_mmc_oclk_onoff(host, 1);
}
if (cmd->flags & MMC_RSP_PRESENT) {
cmd_val |= SDXC_RspExp;
if (cmd->flags & MMC_RSP_136)
cmd_val |= SDXC_LongRsp;
if (cmd->flags & MMC_RSP_CRC)
cmd_val |= SDXC_CheckRspCRC;
if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
cmd_val |= SDXC_DataExp | SDXC_WaitPreOver;
if (cmd->data->flags & MMC_DATA_STREAM) {
imask |= SDXC_AutoCMDDone;
cmd_val |= SDXC_Seqmod | SDXC_SendAutoStop;
}
if (cmd->data->stop) {
imask |= SDXC_AutoCMDDone;
cmd_val |= SDXC_SendAutoStop;
} else
imask |= SDXC_DataOver;
if (cmd->data->flags & MMC_DATA_WRITE)
cmd_val |= SDXC_Write;
else
host->wait_dma = 1;
} else
imask |= SDXC_CmdDone;
} else
imask |= SDXC_CmdDone;
dev_dbg(mmc_dev(host->mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
cmd_val & 0x3f, cmd_val, cmd->arg, imask,
mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
spin_lock_irqsave(&host->lock, iflags);
host->mrq = mrq;
mci_writel(host, REG_IMASK, host->sdio_imask | imask);
spin_unlock_irqrestore(&host->lock, iflags);
mci_writel(host, REG_CARG, cmd->arg);
mci_writel(host, REG_CMDR, cmd_val);
}
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-mmc", },
{ .compatible = "allwinner,sun5i-mmc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = sunxi_mmc_get_ro,
.get_cd = sunxi_mmc_card_present,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.hw_reset = sunxi_mmc_hw_reset,
};
static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int ret;
if (of_device_is_compatible(np, "allwinner,sun4i-mmc"))
host->idma_des_size_bits = 13;
else
host->idma_des_size_bits = 16;
host->vmmc = devm_regulator_get_optional(&pdev->dev, "vmmc");
if (IS_ERR(host->vmmc) && PTR_ERR(host->vmmc) == -EPROBE_DEFER)
return -EPROBE_DEFER;
host->reg_base = devm_ioremap_resource(&pdev->dev,
platform_get_resource(pdev, IORESOURCE_MEM, 0));
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
host->irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(&pdev->dev, host->irq, sunxi_mmc_irq, 0,
"sunxi-mci", host);
if (ret)
return ret;
disable_irq(host->irq);
host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(host->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(host->clk_ahb);
}
host->clk_mod = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(host->clk_mod)) {
dev_err(&pdev->dev, "Could not get mod clock\n");
return PTR_ERR(host->clk_mod);
}
of_property_read_u32(np, "bus-width", &host->bus_width);
if (host->bus_width != 1 && host->bus_width != 4) {
dev_err(&pdev->dev, "Invalid bus-width %d\n", host->bus_width);
return -EINVAL;
}
of_property_read_u32(np, "cd-mode", &host->cd_mode);
switch (host->cd_mode) {
case CARD_DETECT_BY_GPIO_POLL:
host->cd_pin = of_get_named_gpio(np, "cd-gpios", 0);
if (!gpio_is_valid(host->cd_pin)) {
dev_err(&pdev->dev, "Invalid cd-gpios\n");
return -EINVAL;
}
ret = devm_gpio_request(&pdev->dev, host->cd_pin, "mmc_cd");
if (ret) {
dev_err(&pdev->dev, "Could not get cd-gpios\n");
return ret;
}
gpio_direction_input(host->cd_pin);
break;
case CARD_ALWAYS_PRESENT:
break;
default:
dev_err(&pdev->dev, "Invalid cd-mode %d\n", host->cd_mode);
return -EINVAL;
}
host->wp_pin = of_get_named_gpio(np, "wp-gpios", 0);
if (gpio_is_valid(host->wp_pin)) {
ret = devm_gpio_request(&pdev->dev, host->wp_pin, "mmc_wp");
if (ret) {
dev_err(&pdev->dev, "Could not get wp-gpios\n");
return ret;
}
gpio_direction_input(host->wp_pin);
}
return 0;
}
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
host = mmc_priv(mmc);
host->mmc = mmc;
spin_lock_init(&host->lock);
tasklet_init(&host->tasklet, sunxi_mmc_tasklet, (unsigned long)host);
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
ret = -ENOMEM;
goto error_free_host;
}
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 50MHz */
mmc->f_min = 400000;
mmc->f_max = 50000000;
/* available voltages */
if (!IS_ERR(host->vmmc))
mmc->ocr_avail = mmc_regulator_get_ocrmask(host->vmmc);
else
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->caps = MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 |
MMC_CAP_UHS_DDR50 | MMC_CAP_SDIO_IRQ | MMC_CAP_NEEDS_POLL |
MMC_CAP_DRIVER_TYPE_A;
if (host->bus_width == 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
mmc->caps2 = MMC_CAP2_NO_PRESCAN_POWERUP;
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
platform_set_drvdata(pdev, mmc);
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
static int sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
sunxi_mmc_exit_host(host);
tasklet_disable(&host->tasklet);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
return 0;
}
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mci",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(sunxi_mmc_of_match),
},
.probe = sunxi_mmc_probe,
.remove = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
MODULE_ALIAS("platform:sunxi-mmc");

@ -0,0 +1,246 @@
/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
* (C) Copyright 2013-2013 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2013 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
* (C) Copyright 2013-2013 Hans de Goede <hdegoede@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#ifndef __SUNXI_MCI_H__
#define __SUNXI_MCI_H__
/* register offset define */
#define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
#define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
#define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
#define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
#define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
#define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
#define SDXC_REG_CMDR (0x18) /* SMC Command Register */
#define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
#define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
#define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
#define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
#define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
#define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
#define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
#define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
#define SDXC_REG_STAS (0x3C) /* SMC Status Register */
#define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
#define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
#define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
#define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
#define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
#define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
#define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
#define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
#define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
#define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
#define SDXC_REG_CHDA (0x90)
#define SDXC_REG_CBDA (0x94)
#define mci_readl(host, reg) \
__raw_readl((host)->reg_base + SDXC_##reg)
#define mci_writel(host, reg, value) \
__raw_writel((value), (host)->reg_base + SDXC_##reg)
/* global control register bits */
#define SDXC_SoftReset BIT(0)
#define SDXC_FIFOReset BIT(1)
#define SDXC_DMAReset BIT(2)
#define SDXC_HWReset (SDXC_SoftReset|SDXC_FIFOReset|SDXC_DMAReset)
#define SDXC_INTEnb BIT(4)
#define SDXC_DMAEnb BIT(5)
#define SDXC_DebounceEnb BIT(8)
#define SDXC_PosedgeLatchData BIT(9)
#define SDXC_DDR_MODE BIT(10)
#define SDXC_MemAccessDone BIT(29)
#define SDXC_AccessDoneDirect BIT(30)
#define SDXC_ACCESS_BY_AHB BIT(31)
#define SDXC_ACCESS_BY_DMA (0U << 31)
/* clock control bits */
#define SDXC_CardClkOn BIT(16)
#define SDXC_LowPowerOn BIT(17)
/* bus width */
#define SDXC_WIDTH1 (0)
#define SDXC_WIDTH4 (1)
#define SDXC_WIDTH8 (2)
/* smc command bits */
#define SDXC_RspExp BIT(6)
#define SDXC_LongRsp BIT(7)
#define SDXC_CheckRspCRC BIT(8)
#define SDXC_DataExp BIT(9)
#define SDXC_Write BIT(10)
#define SDXC_Seqmod BIT(11)
#define SDXC_SendAutoStop BIT(12)
#define SDXC_WaitPreOver BIT(13)
#define SDXC_StopAbortCMD BIT(14)
#define SDXC_SendInitSeq BIT(15)
#define SDXC_UPCLKOnly BIT(21)
#define SDXC_RdCEATADev BIT(22)
#define SDXC_CCSExp BIT(23)
#define SDXC_EnbBoot BIT(24)
#define SDXC_AltBootOpt BIT(25)
#define SDXC_BootACKExp BIT(26)
#define SDXC_BootAbort BIT(27)
#define SDXC_VolSwitch BIT(28)
#define SDXC_UseHoldReg BIT(29)
#define SDXC_Start BIT(31)
/* interrupt bits */
#define SDXC_RespErr BIT(1)
#define SDXC_CmdDone BIT(2)
#define SDXC_DataOver BIT(3)
#define SDXC_TxDataReq BIT(4)
#define SDXC_RxDataReq BIT(5)
#define SDXC_RespCRCErr BIT(6)
#define SDXC_DataCRCErr BIT(7)
#define SDXC_RespTimeout BIT(8)
#define SDXC_DataTimeout BIT(9)
#define SDXC_VolChgDone BIT(10)
#define SDXC_FIFORunErr BIT(11)
#define SDXC_HardWLocked BIT(12)
#define SDXC_StartBitErr BIT(13)
#define SDXC_AutoCMDDone BIT(14)
#define SDXC_EndBitErr BIT(15)
#define SDXC_SDIOInt BIT(16)
#define SDXC_CardInsert BIT(30)
#define SDXC_CardRemove BIT(31)
#define SDXC_IntErrBit (SDXC_RespErr | SDXC_RespCRCErr | \
SDXC_DataCRCErr | SDXC_RespTimeout | \
SDXC_DataTimeout | SDXC_FIFORunErr | \
SDXC_HardWLocked | SDXC_StartBitErr | \
SDXC_EndBitErr) /* 0xbbc2 */
#define SDXC_IntDoneBit (SDXC_AutoCMDDone | SDXC_DataOver | \
SDXC_CmdDone | SDXC_VolChgDone)
/* status */
#define SDXC_RXWLFlag BIT(0)
#define SDXC_TXWLFlag BIT(1)
#define SDXC_FIFOEmpty BIT(2)
#define SDXC_FIFOFull BIT(3)
#define SDXC_CardPresent BIT(8)
#define SDXC_CardDataBusy BIT(9)
#define SDXC_DataFSMBusy BIT(10)
#define SDXC_DMAReq BIT(31)
#define SDXC_FIFO_SIZE (16)
/* Function select */
#define SDXC_CEATAOn (0xceaaU << 16)
#define SDXC_SendIrqRsp BIT(0)
#define SDXC_SDIORdWait BIT(1)
#define SDXC_AbtRdData BIT(2)
#define SDXC_SendCCSD BIT(8)
#define SDXC_SendAutoStopCCSD BIT(9)
#define SDXC_CEATADevIntEnb BIT(10)
/* IDMA controller bus mod bit field */
#define SDXC_IDMACSoftRST BIT(0)
#define SDXC_IDMACFixBurst BIT(1)
#define SDXC_IDMACIDMAOn BIT(7)
#define SDXC_IDMACRefetchDES BIT(31)
/* IDMA status bit field */
#define SDXC_IDMACTransmitInt BIT(0)
#define SDXC_IDMACReceiveInt BIT(1)
#define SDXC_IDMACFatalBusErr BIT(2)
#define SDXC_IDMACDesInvalid BIT(4)
#define SDXC_IDMACCardErrSum BIT(5)
#define SDXC_IDMACNormalIntSum BIT(8)
#define SDXC_IDMACAbnormalIntSum BIT(9)
#define SDXC_IDMACHostAbtInTx BIT(10)
#define SDXC_IDMACHostAbtInRx BIT(10)
#define SDXC_IDMACIdle (0U << 13)
#define SDXC_IDMACSuspend (1U << 13)
#define SDXC_IDMACDESCRd (2U << 13)
#define SDXC_IDMACDESCCheck (3U << 13)
#define SDXC_IDMACRdReqWait (4U << 13)
#define SDXC_IDMACWrReqWait (5U << 13)
#define SDXC_IDMACRd (6U << 13)
#define SDXC_IDMACWr (7U << 13)
#define SDXC_IDMACDESCClose (8U << 13)
struct sunxi_idma_des {
u32 config;
#define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
#define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
#define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
#define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
#define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
#define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
#define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
/*
* If the idma-des-size-bits of property is ie 13, bufsize bits are:
* Bits 0-12: buf1 size
* Bits 13-25: buf2 size
* Bits 26-31: not used
* Since we only ever set buf1 size, we can simply store it directly.
*/
u32 buf_size;
u32 buf_addr_ptr1;
u32 buf_addr_ptr2;
};
struct sunxi_mmc_host {
struct mmc_host *mmc;
struct regulator *vmmc;
/* IO mapping base */
void __iomem *reg_base;
spinlock_t lock;
struct tasklet_struct tasklet;
/* clock management */
struct clk *clk_ahb;
struct clk *clk_mod;
/* indicator pins */
int wp_pin;
int cd_pin;
int cd_mode;
#define CARD_DETECT_BY_GPIO_POLL (1) /* mmc detected by gpio check */
#define CARD_ALWAYS_PRESENT (2) /* mmc always present */
/* ios information */
u32 clk_mod_rate;
u32 bus_width;
u32 idma_des_size_bits;
u32 ddr;
u32 voltage_switching;
/* irq */
int irq;
u32 int_sum;
u32 sdio_imask;
/* flags */
u32 power_on:1;
u32 io_flag:1;
u32 wait_dma:1;
dma_addr_t sg_dma;
void *sg_cpu;
struct mmc_request *mrq;
u32 ferror;
};
#define MMC_CLK_400K 0
#define MMC_CLK_25M 1
#define MMC_CLK_50M 2
#define MMC_CLK_50MDDR 3
#define MMC_CLK_50MDDR_8BIT 4
#define MMC_CLK_100M 5
#define MMC_CLK_200M 6
#define MMC_CLK_MOD_NUM 7
struct sunxi_mmc_clk_dly {
u32 mode;
u32 oclk_dly;
u32 sclk_dly;
};
#endif
Loading…
Cancel
Save