add ar7 lzma loader

SVN-Revision: 1557
v19.07.3_mercusys_ac12_duma
Felix Fietkau 19 years ago
parent ef18c8f121
commit 06ef24042b

@ -5,13 +5,14 @@ KDIR:=$(BUILD_DIR)/linux-$(KERNEL)-ar7
PKG_BUILD_DIR:=$(BUILD_DIR)/ar7loader
LOADADDR := 0x94020000
KERNEL_ENTRY := 0x${shell nm $(KDIR)/linux-$(KERNEL)*/vmlinux | grep kernel_entry | cut -d' ' -f1}
OUTPUT_FORMAT := elf32-tradlittlemips
CFLAGS := -D__KERNEL__ -Wall -Wstrict-prototypes -Wno-trigraphs -Os \
-fno-strict-aliasing -fno-common -fomit-frame-pointer -G 0 -mno-abicalls -fno-pic \
-pipe -mlong-calls -fno-common \
-mabi=32 -march=mips32 -Wa,-32 -Wa,-march=mips32 -Wa,-mips32 -Wa,--trap \
-DLOADADDR=$(LOADADDR)
$(PKG_BUILD_DIR):
mkdir -p $(PKG_BUILD_DIR)
@ -24,6 +25,9 @@ $(PKG_BUILD_DIR)/ld.script: src/ld.script.in
sed -e 's/@@OUTPUT_FORMAT@@/$(OUTPUT_FORMAT)/' \
-e 's/@@LOADADDR@@/$(LOADADDR)/' <$< >$@
$(PKG_BUILD_DIR)/LzmaDecode.o: src/LzmaDecode.c
$(TARGET_CC) $(CFLAGS) -c -o $@ $<
$(PKG_BUILD_DIR)/loader.o: src/loader.c
$(TARGET_CC) $(CFLAGS) -c -o $@ $<
@ -33,10 +37,14 @@ $(PKG_BUILD_DIR)/srec2bin: src/srec2bin.c
$(KDIR)/vmlinux.gz: $(KDIR)/vmlinux
gzip -c -vf9 < $< > $@
$(BIN_DIR)/openwrt-ar7-zimage.bin: $(KDIR)/vmlinux.gz compile
$(KDIR)/vmlinux.lzma: $(KDIR)/vmlinux
cat $^ | $(STAGING_DIR)/bin/lzma e -si -so -eos -lc1 -lp2 -pb2 > $@ || (rm -f $@ && false)
$(BIN_DIR)/openwrt-ar7-zimage.bin: $(KDIR)/vmlinux.lzma compile
$(TARGET_CROSS)ld -T $(PKG_BUILD_DIR)/zimage.script -r -b binary $< -o $(KDIR)/zimage.o
$(TARGET_CROSS)ld -static -G 0 -no-warn-mismatch -R $(KDIR)/linux-$(KERNEL)*/vmlinux -T $(PKG_BUILD_DIR)/ld.script \
$(TARGET_CROSS)ld -static -G 0 --defsym kernel_entry=$(KERNEL_ENTRY) -T $(PKG_BUILD_DIR)/ld.script \
$(PKG_BUILD_DIR)/loader.o \
$(PKG_BUILD_DIR)/LzmaDecode.o \
$(KDIR)/zimage.o \
-o $(KDIR)/loader
$(TARGET_CROSS)objcopy -O srec $(KDIR)/loader $(KDIR)/ram_zimage.sre
@ -49,8 +57,8 @@ ifeq ($(FS),jffs2-4MB)
ALIGN:=bs=65536 conv=sync
endif
$(BIN_DIR)/openwrt-ar7-$(KERNEL)-$(FS).bin:
dd if=$(BIN_DIR)/openwrt-ar7-zimage.bin $(ALIGN) > $@
$(BIN_DIR)/openwrt-ar7-$(KERNEL)-$(FS).bin: $(BIN_DIR)/openwrt-ar7-zimage.bin
dd if=$< $(ALIGN) > $@
cat $(BUILD_DIR)/linux-$(KERNEL)-ar7/root.$(FS) >> $@
define pattern_template
@ -70,6 +78,6 @@ clean:
rm -f $(BIN_DIR)/openwrt-ar7*
prepare: $(PKG_BUILD_DIR) $(PKG_BUILD_DIR)/zimage.script $(PKG_BUILD_DIR)/ld.script
compile: prepare $(PKG_BUILD_DIR)/loader.o $(PKG_BUILD_DIR)/srec2bin
compile: prepare $(PKG_BUILD_DIR)/loader.o $(PKG_BUILD_DIR)/LzmaDecode.o $(PKG_BUILD_DIR)/srec2bin
install: $(BIN_DIR)/openwrt-ar7-zimage.bin $(BIN_DIR)/openwrt-ar7-$(KERNEL)-$(FS).bin

@ -0,0 +1,663 @@
/*
LzmaDecode.c
LZMA Decoder
LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this code, expressly permits you to
statically or dynamically link your code (or bind by name) to the
interfaces of this file without subjecting your linked code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#include "LzmaDecode.h"
#ifndef Byte
#define Byte unsigned char
#endif
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
typedef struct _CRangeDecoder
{
Byte *Buffer;
Byte *BufferLim;
UInt32 Range;
UInt32 Code;
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback;
int Result;
#endif
int ExtraBytes;
} CRangeDecoder;
Byte RangeDecoderReadByte(CRangeDecoder *rd)
{
if (rd->Buffer == rd->BufferLim)
{
#ifdef _LZMA_IN_CB
UInt32 size;
rd->Result = rd->InCallback->Read(rd->InCallback, &rd->Buffer, &size);
rd->BufferLim = rd->Buffer + size;
if (size == 0)
#endif
{
rd->ExtraBytes = 1;
return 0xFF;
}
}
return (*rd->Buffer++);
}
/* #define ReadByte (*rd->Buffer++) */
#define ReadByte (RangeDecoderReadByte(rd))
void RangeDecoderInit(CRangeDecoder *rd,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback
#else
Byte *stream, UInt32 bufferSize
#endif
)
{
int i;
#ifdef _LZMA_IN_CB
rd->InCallback = inCallback;
rd->Buffer = rd->BufferLim = 0;
#else
rd->Buffer = stream;
rd->BufferLim = stream + bufferSize;
#endif
rd->ExtraBytes = 0;
rd->Code = 0;
rd->Range = (0xFFFFFFFF);
for(i = 0; i < 5; i++)
rd->Code = (rd->Code << 8) | ReadByte;
}
#define RC_INIT_VAR UInt32 range = rd->Range; UInt32 code = rd->Code;
#define RC_FLUSH_VAR rd->Range = range; rd->Code = code;
#define RC_NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | ReadByte; }
UInt32 RangeDecoderDecodeDirectBits(CRangeDecoder *rd, int numTotalBits)
{
RC_INIT_VAR
UInt32 result = 0;
int i;
for (i = numTotalBits; i > 0; i--)
{
/* UInt32 t; */
range >>= 1;
result <<= 1;
if (code >= range)
{
code -= range;
result |= 1;
}
/*
t = (code - range) >> 31;
t &= 1;
code -= range & (t - 1);
result = (result + result) | (1 - t);
*/
RC_NORMALIZE
}
RC_FLUSH_VAR
return result;
}
int RangeDecoderBitDecode(CProb *prob, CRangeDecoder *rd)
{
UInt32 bound = (rd->Range >> kNumBitModelTotalBits) * *prob;
if (rd->Code < bound)
{
rd->Range = bound;
*prob += (kBitModelTotal - *prob) >> kNumMoveBits;
if (rd->Range < kTopValue)
{
rd->Code = (rd->Code << 8) | ReadByte;
rd->Range <<= 8;
}
return 0;
}
else
{
rd->Range -= bound;
rd->Code -= bound;
*prob -= (*prob) >> kNumMoveBits;
if (rd->Range < kTopValue)
{
rd->Code = (rd->Code << 8) | ReadByte;
rd->Range <<= 8;
}
return 1;
}
}
#define RC_GET_BIT2(prob, mi, A0, A1) \
UInt32 bound = (range >> kNumBitModelTotalBits) * *prob; \
if (code < bound) \
{ A0; range = bound; *prob += (kBitModelTotal - *prob) >> kNumMoveBits; mi <<= 1; } \
else \
{ A1; range -= bound; code -= bound; *prob -= (*prob) >> kNumMoveBits; mi = (mi + mi) + 1; } \
RC_NORMALIZE
#define RC_GET_BIT(prob, mi) RC_GET_BIT2(prob, mi, ; , ;)
int RangeDecoderBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
int mi = 1;
int i;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = numLevels; i > 0; i--)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT(prob, mi)
#else
mi = (mi + mi) + RangeDecoderBitDecode(probs + mi, rd);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return mi - (1 << numLevels);
}
int RangeDecoderReverseBitTreeDecode(CProb *probs, int numLevels, CRangeDecoder *rd)
{
int mi = 1;
int i;
int symbol = 0;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
for(i = 0; i < numLevels; i++)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + mi;
RC_GET_BIT2(prob, mi, ; , symbol |= (1 << i))
#else
int bit = RangeDecoderBitDecode(probs + mi, rd);
mi = mi + mi + bit;
symbol |= (bit << i);
#endif
}
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
Byte LzmaLiteralDecode(CProb *probs, CRangeDecoder *rd)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
#endif
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
Byte LzmaLiteralDecodeMatch(CProb *probs, CRangeDecoder *rd, Byte matchByte)
{
int symbol = 1;
#ifdef _LZMA_LOC_OPT
RC_INIT_VAR
#endif
do
{
int bit;
int matchBit = (matchByte >> 7) & 1;
matchByte <<= 1;
#ifdef _LZMA_LOC_OPT
{
CProb *prob = probs + ((1 + matchBit) << 8) + symbol;
RC_GET_BIT2(prob, symbol, bit = 0, bit = 1)
}
#else
bit = RangeDecoderBitDecode(probs + ((1 + matchBit) << 8) + symbol, rd);
symbol = (symbol << 1) | bit;
#endif
if (matchBit != bit)
{
while (symbol < 0x100)
{
#ifdef _LZMA_LOC_OPT
CProb *prob = probs + symbol;
RC_GET_BIT(prob, symbol)
#else
symbol = (symbol + symbol) | RangeDecoderBitDecode(probs + symbol, rd);
#endif
}
break;
}
}
while (symbol < 0x100);
#ifdef _LZMA_LOC_OPT
RC_FLUSH_VAR
#endif
return symbol;
}
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
int LzmaLenDecode(CProb *p, CRangeDecoder *rd, int posState)
{
if(RangeDecoderBitDecode(p + LenChoice, rd) == 0)
return RangeDecoderBitTreeDecode(p + LenLow +
(posState << kLenNumLowBits), kLenNumLowBits, rd);
if(RangeDecoderBitDecode(p + LenChoice2, rd) == 0)
return kLenNumLowSymbols + RangeDecoderBitTreeDecode(p + LenMid +
(posState << kLenNumMidBits), kLenNumMidBits, rd);
return kLenNumLowSymbols + kLenNumMidSymbols +
RangeDecoderBitTreeDecode(p + LenHigh, kLenNumHighBits, rd);
}
#define kNumStates 12
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
#ifdef _LZMA_OUT_READ
typedef struct _LzmaVarState
{
CRangeDecoder RangeDecoder;
Byte *Dictionary;
UInt32 DictionarySize;
UInt32 DictionaryPos;
UInt32 GlobalPos;
UInt32 Reps[4];
int lc;
int lp;
int pb;
int State;
int PreviousIsMatch;
int RemainLen;
} LzmaVarState;
int LzmaDecoderInit(
unsigned char *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
unsigned char *dictionary, UInt32 dictionarySize,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback
#else
unsigned char *inStream, UInt32 inSize
#endif
)
{
LzmaVarState *vs = (LzmaVarState *)buffer;
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
UInt32 i;
if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
return LZMA_RESULT_NOT_ENOUGH_MEM;
vs->Dictionary = dictionary;
vs->DictionarySize = dictionarySize;
vs->DictionaryPos = 0;
vs->GlobalPos = 0;
vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
vs->lc = lc;
vs->lp = lp;
vs->pb = pb;
vs->State = 0;
vs->PreviousIsMatch = 0;
vs->RemainLen = 0;
dictionary[dictionarySize - 1] = 0;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
RangeDecoderInit(&vs->RangeDecoder,
#ifdef _LZMA_IN_CB
inCallback
#else
inStream, inSize
#endif
);
return LZMA_RESULT_OK;
}
int LzmaDecode(unsigned char *buffer,
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
LzmaVarState *vs = (LzmaVarState *)buffer;
CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
CRangeDecoder rd = vs->RangeDecoder;
int state = vs->State;
int previousIsMatch = vs->PreviousIsMatch;
Byte previousByte;
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << (vs->pb)) - 1;
UInt32 literalPosMask = (1 << (vs->lp)) - 1;
int lc = vs->lc;
int len = vs->RemainLen;
UInt32 globalPos = vs->GlobalPos;
Byte *dictionary = vs->Dictionary;
UInt32 dictionarySize = vs->DictionarySize;
UInt32 dictionaryPos = vs->DictionaryPos;
if (len == -1)
{
*outSizeProcessed = 0;
return LZMA_RESULT_OK;
}
while(len > 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
#else
int LzmaDecode(
Byte *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback,
#else
unsigned char *inStream, UInt32 inSize,
#endif
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed)
{
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
CProb *p = (CProb *)buffer;
CRangeDecoder rd;
UInt32 i;
int state = 0;
int previousIsMatch = 0;
Byte previousByte = 0;
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
UInt32 nowPos = 0;
UInt32 posStateMask = (1 << pb) - 1;
UInt32 literalPosMask = (1 << lp) - 1;
int len = 0;
if (bufferSize < numProbs * sizeof(CProb))
return LZMA_RESULT_NOT_ENOUGH_MEM;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
RangeDecoderInit(&rd,
#ifdef _LZMA_IN_CB
inCallback
#else
inStream, inSize
#endif
);
#endif
*outSizeProcessed = 0;
while(nowPos < outSize)
{
int posState = (int)(
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& posStateMask);
#ifdef _LZMA_IN_CB
if (rd.Result != LZMA_RESULT_OK)
return rd.Result;
#endif
if (rd.ExtraBytes != 0)
return LZMA_RESULT_DATA_ERROR;
if (RangeDecoderBitDecode(p + IsMatch + (state << kNumPosBitsMax) + posState, &rd) == 0)
{
CProb *probs = p + Literal + (LZMA_LIT_SIZE *
(((
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
if (previousIsMatch)
{
Byte matchByte;
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
#else
matchByte = outStream[nowPos - rep0];
#endif
previousByte = LzmaLiteralDecodeMatch(probs, &rd, matchByte);
previousIsMatch = 0;
}
else
previousByte = LzmaLiteralDecode(probs, &rd);
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#endif
}
else
{
previousIsMatch = 1;
if (RangeDecoderBitDecode(p + IsRep + state, &rd) == 1)
{
if (RangeDecoderBitDecode(p + IsRepG0 + state, &rd) == 0)
{
if (RangeDecoderBitDecode(p + IsRep0Long + (state << kNumPosBitsMax) + posState, &rd) == 0)
{
#ifdef _LZMA_OUT_READ
UInt32 pos;
#endif
if (
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
== 0)
return LZMA_RESULT_DATA_ERROR;
state = state < 7 ? 9 : 11;
#ifdef _LZMA_OUT_READ
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
continue;
}
}
else
{
UInt32 distance;
if(RangeDecoderBitDecode(p + IsRepG1 + state, &rd) == 0)
distance = rep1;
else
{
if(RangeDecoderBitDecode(p + IsRepG2 + state, &rd) == 0)
distance = rep2;
else
{
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
len = LzmaLenDecode(p + RepLenCoder, &rd, posState);
state = state < 7 ? 8 : 11;
}
else
{
int posSlot;
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < 7 ? 7 : 10;
len = LzmaLenDecode(p + LenCoder, &rd, posState);
posSlot = RangeDecoderBitTreeDecode(p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits), kNumPosSlotBits, &rd);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = ((2 | ((UInt32)posSlot & 1)) << numDirectBits);
if (posSlot < kEndPosModelIndex)
{
rep0 += RangeDecoderReverseBitTreeDecode(
p + SpecPos + rep0 - posSlot - 1, numDirectBits, &rd);
}
else
{
rep0 += RangeDecoderDecodeDirectBits(&rd,
numDirectBits - kNumAlignBits) << kNumAlignBits;
rep0 += RangeDecoderReverseBitTreeDecode(p + Align, kNumAlignBits, &rd);
}
}
else
rep0 = posSlot;
rep0++;
}
if (rep0 == (UInt32)(0))
{
/* it's for stream version */
len = -1;
break;
}
if (rep0 > nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
{
return LZMA_RESULT_DATA_ERROR;
}
len += kMatchMinLen;
do
{
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
len--;
}
while(len > 0 && nowPos < outSize);
}
}
#ifdef _LZMA_OUT_READ
vs->RangeDecoder = rd;
vs->DictionaryPos = dictionaryPos;
vs->GlobalPos = globalPos + nowPos;
vs->Reps[0] = rep0;
vs->Reps[1] = rep1;
vs->Reps[2] = rep2;
vs->Reps[3] = rep3;
vs->State = state;
vs->PreviousIsMatch = previousIsMatch;
vs->RemainLen = len;
#endif
*outSizeProcessed = nowPos;
return LZMA_RESULT_OK;
}

@ -0,0 +1,100 @@
/*
LzmaDecode.h
LZMA Decoder interface
LZMA SDK 4.05 Copyright (c) 1999-2004 Igor Pavlov (2004-08-25)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this code, expressly permits you to
statically or dynamically link your code (or bind by name) to the
interfaces of this file without subjecting your linked code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#ifndef __LZMADECODE_H
#define __LZMADECODE_H
/* #define _LZMA_IN_CB */
/* Use callback for input data */
/* #define _LZMA_OUT_READ */
/* Use read function for output data */
/* #define _LZMA_PROB32 */
/* It can increase speed on some 32-bit CPUs,
but memory usage will be doubled in that case */
/* #define _LZMA_LOC_OPT */
/* Enable local speed optimizations inside code */
#ifndef UInt32
#ifdef _LZMA_UINT32_IS_ULONG
#define UInt32 unsigned long
#else
#define UInt32 unsigned int
#endif
#endif
#ifdef _LZMA_PROB32
#define CProb UInt32
#else
#define CProb unsigned short
#endif
#define LZMA_RESULT_OK 0
#define LZMA_RESULT_DATA_ERROR 1
#define LZMA_RESULT_NOT_ENOUGH_MEM 2
#ifdef _LZMA_IN_CB
typedef struct _ILzmaInCallback
{
int (*Read)(void *object, unsigned char **buffer, UInt32 *bufferSize);
} ILzmaInCallback;
#endif
#define LZMA_BASE_SIZE 1846
#define LZMA_LIT_SIZE 768
/*
bufferSize = (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)))* sizeof(CProb)
bufferSize += 100 in case of _LZMA_OUT_READ
by default CProb is unsigned short,
but if specify _LZMA_PROB_32, CProb will be UInt32(unsigned int)
*/
#ifdef _LZMA_OUT_READ
int LzmaDecoderInit(
unsigned char *buffer, UInt32 bufferSize,
int lc, int lp, int pb,
unsigned char *dictionary, UInt32 dictionarySize,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback
#else
unsigned char *inStream, UInt32 inSize
#endif
);
#endif
int LzmaDecode(
unsigned char *buffer,
#ifndef _LZMA_OUT_READ
UInt32 bufferSize,
int lc, int lp, int pb,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback,
#else
unsigned char *inStream, UInt32 inSize,
#endif
#endif
unsigned char *outStream, UInt32 outSize,
UInt32 *outSizeProcessed);
#endif

@ -5,15 +5,15 @@ ENTRY(tikernelunzip)
{
/* Allocate memory space on top of kernel bss space */
. = _fbss;
. = 0x94200000;
.text :
{
*(.text)
*(.rodata)
*(.rodata1)
*(.gnu.warning)
*(.text.init)
*(.data.init)
*(.rodata)
*(.rodata1)
*(.gnu.warning)
*(.text.init)
*(.data.init)
}
.data :
@ -21,21 +21,14 @@ ENTRY(tikernelunzip)
*(*)
}
bss :
.bss :
{
inflate_bss_start = .;
*(.dynbss)
*(.bss)
*(COMMON)
*(.sbss)
*(.scommon)
inflate_bss_end = .;
*(COMMON)
*(.bss)
*(.sbss)
*(.scommon)
. = ALIGN (0x8000);
inflate_slide_window = .;
. += 0x8000; /* slide window is 8000h */
inflate_free_memory_start = .;
workspace = .;
}
}

File diff suppressed because it is too large Load Diff

@ -6,6 +6,6 @@ OUTPUT_ARCH(mips)
{
kernelimage = .;
*(.data)
kernelimage_end = .;
kernelimage_end = .;
}
}

Loading…
Cancel
Save